- 資料編 目次 -

1.	オリンピックアクアティクスセンターの計画の目的及び内容・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	資料編 1
2.	環境に及ぼす影響の内容及び程度並びにその評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	資料編7
	2.1 大気等・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	資料編7
	2.2 騒音・振動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	資料編 50
	2.3 歩行者空間の快適性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	資料編 70
	2.4 廃棄物 · · · · · · · · · · · · · · · · · · ·	資料編 76

1. オリンピックアクアティクスセンターの計画の目的及び内容

1.1 内容

1.1.1 施工計画

(1) 工事用車両

本事業における工事用車両の台数は、表 1.1-1に示すとおりである。

工事用車両の走行台数が最も多くなる時期は、準備工事着工後5か月目であり、425台/日である。

(2) 建設機械

本事業における建設機械の台数は、表 1.1-2 に示すとおりである。

建設機械稼働台数の稼働台数が最も多くなる時期は、準備工事着工後3か月目であり、稼働台数は56台/日である。

表 1.1-1 工事用車両の台数

述~	ベ月数	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
液状化対策工事	準備工事																																							
及扒口对來工事	液状化対策工事																																							
	山留工事																																							
	杭工事																																							
	土工事																																							
	基礎躯体工事																																							
本体工事	地上鉄骨工事																																							
本本工	屋根工事																																							
	地上躯体工事																																							
	外装工事																																							
	内装工事																																							
	外構工事																																							
工事用車両																																								
大型車両(台/日)		5	10	295	400	405	115	20	33.8	25	25	112.5	110	55	55	40	15	40	40	40	27.5	110	80	40	90	210	70	70	32.5	70	65	90	40	100	100	30	95	80	85	10
小型車両(台/日)	•	5	5	15	25	20	10	15	31.2	15	15	62.5	50	50	50	100	125	100	100	100	187.5	200	150	125	100	100	100	100	187.5	150	150	200	250	200	200	250	150	150	150	50
一日当り第数合計	(台/日)	10	15	310	425	425	125	35	65	40	40	175	160	105	105	140	140	140	140	140	215	310	230	165	190		170	170	220	220	215	290	290	300	300	280	245	230	235	60

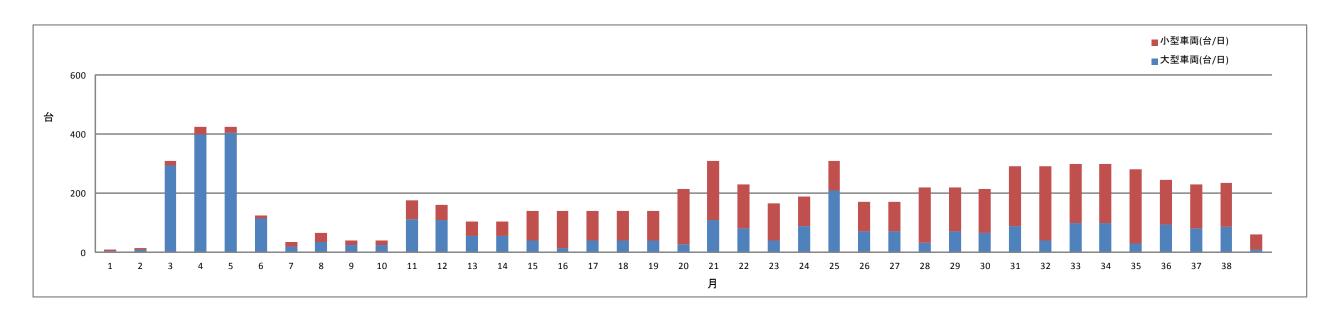
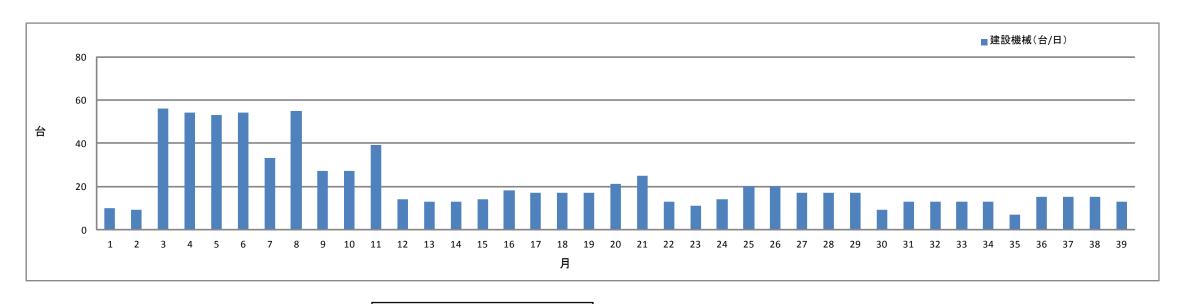



表 1.1-2 建設機械の台数

述~	ベ月数	1	2 3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
本业ルも生土 市	準備工事																																						
液状化対策工事	液状化対策工事																																						
	山留工事																																						
	杭工事																																						
	土工事																																			\Box		$ \bot $	
	基礎躯体工事														_			_		_																			
本体工事	地上鉄骨工事																																						
77.17.4	屋根工事					ļ																																	
	地上躯体工事		_		ļ							-	-		-																						\longrightarrow		
	外装工事												+		-			_																					
	内装工事		_																																				
 建設機械	外構工事					<u> </u>									1							<u> </u>							ļ			<u> </u>							
ブルドーザー		2	2 (0 0	0	0	0	0	0	0	n	(0 0	(1 0	0		0	0	٥	Λ	٥	0	0	Λ	Λ	0	0	0	<u> </u>	<u> </u>	0	0	ol	0	0	0	0	Λ
一軸掘削機		0	0 3	-	Ť	2	0	0	0	0	0		_		' 	0	0	0	0	0	0	0	0	0	0	0	0	0	_	1	1	0	0	0	0	0		0	_
液状化対策施工		0	0 1	1 11	11	11	0	0	0	0	0	0	0 0	+-		0	0	0	0	0	0	0	0	0	0	0	0	0	Ŭ	0	0	0	0	0	0	0	0	0	
コンプレッサー		0	0 1	1 11	11	11	0	0	0	0	0	C	0) 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1.3m ³ タイヤショク	ベル	0	0 1	1 11	11	11	0	0	0	0	0	C	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
アスファルトフィニ	ニッシャー	0	0 (0 0	0	0	0	0	0	0	0	C	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2
タイヤローラー		0	0 (0 0	0	0	0	0	0	0	0	C	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	2	2
杭打機		0	0 (0 0	0	0	0	7	7	7	7	0	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
三軸掘削機		0	0 (0 0	0	0	4	4	0	0	0	C	0 (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
アボロンGV330		0	0 (0 0	0	0	4	4	0	0	0	C	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
サイレントパイラ	_	0	0 (0 0	0	0	4	4	0	0	0	C	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
発電機		2	2 1	1 11	11	11	4	11	7	7	7	4	1 4	. 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	2	2	2	2	2	2	2	2	0
0.45m³バックホー	_	4	4 (0 (0	0	0	6	6	6	6	6	C	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	4	4	4	4
0.7m ³ バックホー		0	0 6	6 6	6	6	0	0	0	0	3	3	3	3	3 0	0	0	0	0	2	2	0	0	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0
100tクローラークレーン	/	0	0 (0 0	0	0	2	9	7	7	7	C	0	(0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
120tクローラークレーン	,	0	0 (0 (0	0	0	0	0	0	0	0	C	0) 1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
200tクローラークレーン		0	0 (0 0	0	0	0	0	0	0	0	C	0	(0	4	5	5	5	5	5	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350tクローラークレーン		0	0 (0 0	0	0	0	0	0	0	0	C	0	() 2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
クレーン車 20~60	Ot	2	1 4	4 2	1	2	9	10	0	0	6	4	1 4	. 4	1 7	7	7	7	7	7	11	5	5	5	11	11	11	11	11	5	9	9	9	9	5	5	5	5	5
コンクリートポンプ。車		0	0 (0 0	0	0	0	0	0	0	3	3	3 2	2	2 0	0	0	0	0	2	2	2	2	3	3	3	2	2	2	0	2	2	2	2	0	0	0	0	0
稼働台数合計(台/	日)	10	9 50	6 54	53	54	33	55	27	27	39	14	1 13	13	14	18	17	17	17	21	25	13	11	14	20	20	17	17	17	9	13	13	13	13	7	15	15	15	13

二酸化窒素、浮遊粒子状物質排出量最大期間

窒素酸化物月別総排出量(m ³ /月)	284	259	2487	2358	2346	2666	1340	2771	1615	1553	1715	529	523	502	506	576	540	611	564	661	773	520	432	499	649	599	529	507	507	412	352	338	352	366	221	311	351	324	152
浮遊粒子状物質月別総排出量(kg/月)	17	16	156	148	148	168	74	152	89	86	96	30	30	29	27	31	29	33	30	37	43	28	23	28	36	33	29	27	27	22	19	18	19	20	12	19	21	20	10
騒音レベル合成値(dB)	114	113	120	119	119	119	120	123	120	120	121	116	116	116	115	117	117	117	117	118	119	116	114	116	117	117	116	116	116	112	115	115	115	115	111	115	115	115	115
振動レベルレベル合成値(dB)	71	71	77	77	77	77	73	75	71	71	74	72	72	72	66	66	66	66	66	71	71	67	67	71	71	71	67	67	67	66	65	65	65	65	63	67	67	67	66

振動最大期間

騒音最大期間

2. 環境に及ぼす影響の内容及び程度並びにその評価

2.1 大気等

2.1.1 現況調査

(1) 大気質の状況

現地調査における大気質の測定結果は、表 2.1-1~表 2.1-5 に示すとおりである。調査地点は、図 2.1-1 に示すとおりである。

(2) 気象の状況

現地調査における気象の測定結果は、表 $2.1-6(1)\sim(4)$ 、表 $2.1-7(1)\sim(4)$ 、風配図は、図 2.1-2 に示すとおりである。調査地点は、図 2.1-1 に示すとおりである。

また、現地調査と同時期における東京管区気象台の相関性(ベクトル相関)は、四季を通じて以下のとおりである。

$$r(V_{A}, V_{B}) = \frac{\sum |V_{Ai}| \cdot |V_{Bi}| \cos \theta_{i}}{\sum |V_{Ai}| \cdot |V_{Bi}|}$$

=0.892

ここで、

r(VA, VB): A地点とB地点との間の気象(風向・風速)の相関性

 $ig|V_{Ai}ig|\cdotig|V_{Bi}ig|_{: A$ 地点の風速imesB地点の風速

 $\cos \theta i : A$ 地点の風向とB地点の風向のなす角 (ラジアン)

また、季節ごとのベクトル相関は、春季が 0.889、夏季が 0.924、秋季が 0.875、冬季が 0.892 である。

各季節、各時間毎の $|V_{Ai}| \cdot |V_{Bi}|$ 及び $\cos \theta i$ は、表 $2.1 - 8(1) \sim (4)$ に示すとおりである。

平成25年度に東京管区気象台にて測定された風向の異常年検定の結果は、表2.1-9に示すとおりである。いずれの風向も採択されていることから、平成25年度の気象は異常ではなかったと判断した。

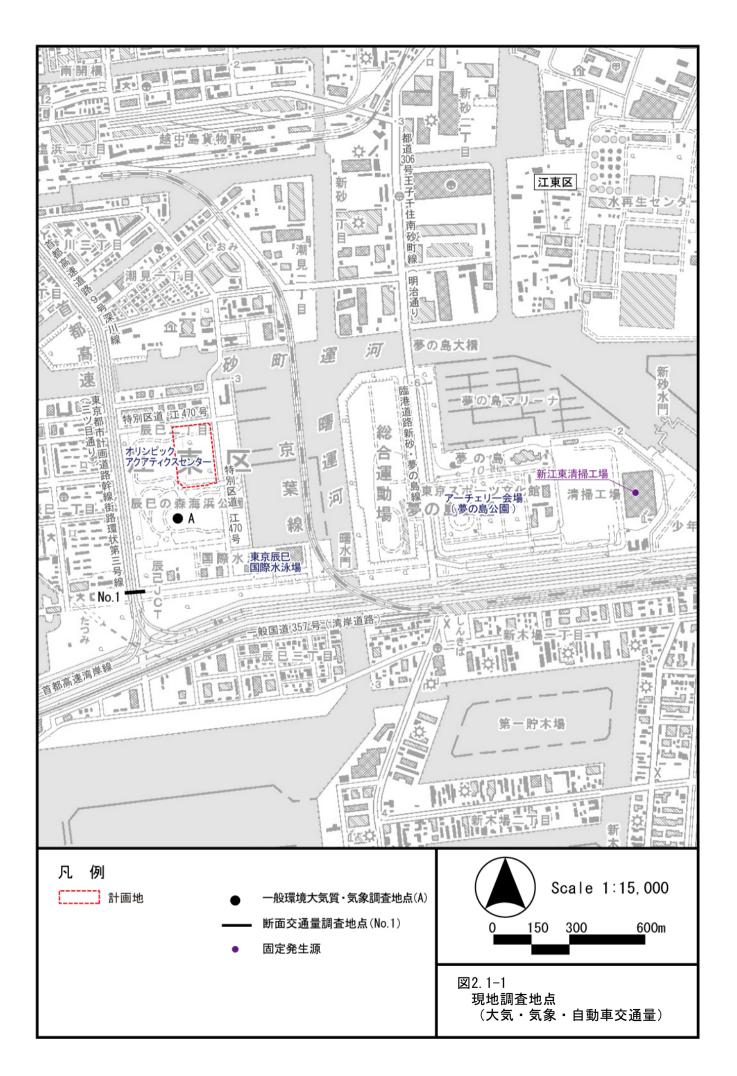


表2.1-1(1) 大気質現地調査結果(二酸化窒素、春季)

平成26年5月	月23日~5月	29日								単位:ppm
	5月23日	5月24日	5月25日	5月26日	1 5月27日	5月28日	5月29日	平均値	最大値	最小値
時 刻	(金)	(土)	(目)	(月)	(火)	(水)	(木)	十名區	取八直	取/1.恒
0~1	0.006	0.029	0.017	0.018	0.020	<u>0. 015</u>	0.036	0.020	_0.036	0.006
1~2	0.005	0.023	0.020	0.021	0.031	0.021	0.031	0.022	0.031	0.005
2~3	0.005	0.018	0.020	0.022	0.030	0.012	0.038	0.021	0.038	0.005
3 <u>~4</u>	_0.007	<u>0. 025</u>	0.022	<u>0. 027</u>	_0 <u>.020</u>	<u>0.016</u>	0.036	<u>0. 022</u>	_0.036 _	<u>0.007</u>
<u>4~5</u>	0.013	0.028	0.021	0.040	0.015	0.021	0.043	0.026	0.043	0.013
5~6	0.009	0.026	0.025	0.041	0.015	0.015	0.037	0.024	0.041	0.009
$6\sim7$	0.012	0.024	0. 028	0.042	0.026	0.019	0.031	0.026	0.042	0.012
7∼8	0.012	0.018	0.027	0.032	0.023	0.024	0.026	0.023	0.032	0.012
8~9	0.014	0.021	0.022	0.029	0.020	0.019	0.034	0.023	0.034	0.014
9~10	0.016	0.030	0.014	0.025	<u>0. 021</u>	0.023	0. 029	0.023	<u>0.030</u>	0.014
10~11	0.018	0.030	0.016	0.025	0.017	0.022	0.022	0.021	0.030	0.016
11~12	0.018	0.014	0.024	0.023	0.012	0.026	0.019	0.019	0.026	0.012
12~13	0.017	0.014	0.021	0.020	0.012	0.023	0.020	0.018	0.023	0.012
$13 \sim 14$	0.017	0.014	0.023	0.022	0.009	0.023	0.024	0.019	0.024	0.009
$14 \sim 15$	0.022	0.017	0.023	0.026	0.010	0.025	0.042	0.024	0.042	0.010
$15 \sim 16$	0.021	0.021	0.023	0. 027	0.025	0.030	0.035	0.026	<u>0.035</u>	0.021
$16 \sim 17$	0.040	0.024	0.025	0.028	0.057	0.031	0.038	0.035	0.057	0.024
$17 \sim 18$	0.039	0.025	0.029	0.025	0.044	0.031	0.041	0.033	0.044	0.025
<u>18~19</u>	_0 <u>.035</u> _	0.029	0.027	0.022	0.043	<u>0. 031</u>	0.049	0.034	0.049	0.022
<u>19~20</u>	_0.026 _	0.028	0.026	0.022	<u>0.044</u>	<u>0. 025</u>	0.052	<u>0.032</u>	0.052	0.022
20~21	0.023	0.019	0.019	0.020	0.030	0.029	0.050	0.027	0.050	0.019
21~22	0.025	0.020	0.017	0.019	0. 025	0.036	0.049	0.027	0.049	0.017
22~23	0.025	0.020	0.015	0.018	0.020	0.032	0.047	0.025	0.047	0.015
23~0	0.030	0.020	0.016	0.016	0.020	0.037	0.039	0.025	0.039	0.016
平均值	0.019	0.022	0. 022	0.025	<u>0</u> . 025	0.024	0.036	0.025	Ĺ	<u>! </u>
最大值_	0.040	0.030	0.029	0.042	0. 057	0.037	0.052		0.057	<u>! </u>
最小値	0.005	0.014	0.014	0.016	0.009	0.012	0.019		[0.005

表2.1-1(2) 大気質現地調査結果(二酸化窒素、夏季)

平成26年7月	月2日~7月8	3日								単位:ppm
	7月2日	7月3日	Ⅰ 7月4日	7月5日	7月6日	7月7日	7月8日	平均値	■ 最大値	最小値
時 刻	(水)	(木)	(金)	(土)	(目)	(月)	(火)	一均區	取八區	取小恒
0~1	0.008	0.015	0.024	0.005	0.010	<u>0.011</u>	0.027	0.014	0.027	0.005
1~2	0.012	0.016	0.027	0.004	0.005	0.013	0.025	0.015	0.027	0.004
2~3	0.011	0.015	0.022	0.005	0.007	0.009	0.030	0.014	0.030	0. 005
3~4	0.010	0.023	0.013	0.005	0.006	0.016	0.030	0.015	0.030	0.005
4~5	0.013	0.029	0.013	0.005	0.009	0.020	0.032	0.017	0.032	0.005
5~6	0.014	0.031	0.010	0.007	0.010	0.022	0. 027	0.017	0.031	0.007
<u>6~7</u>	<u>0. 019</u>	0.030	<u>0.011</u>	0.008	<u>0. 008</u>	0.026	<u>0. 021</u>	0.018	<u>0.030</u>	0.008
7∼8	0.027	0.024	0.014	0.009	0.009	0.027	0.019	0.018	0.027	0.009
8~9	0.025	0.026	0.013	0.009	0.009	0.026	0.015	0.018	0.026	0.009
<u>9~10</u>	0.023	0.023	<u>0.011</u>	0.010	<u>0. 007</u>	0.024	<u>0. 020</u>	0.017	<u>0.024</u>	0.007
_1 <u>0~11</u>	0.018	0.023	0.011	0.010	0.008	0.026	0.026	0.017	<u>0. 026</u>	0.008
11~12	0.015	0.021	0.011	0.010	0.006	0.029	0.014	0.015	0.029	0.006
<u>12~13</u>	0.028	0.020	0.008	0.009	0.008	0.029	0.014	0.017	0.029	0.008
<u>13~14</u>	0.019	0.023	0.010	0.009	0.007	0.028	0.020	0.017	0.028	<u>0. 007</u>
14~15	0.021	0.030	0.009	0.009	0.010	0.037	0.025	0.020	0.037	0.009
15~16	0.021	0.028	0.008	<u>0. 007</u>	0.011	0.044	0.019	0.020	0.044	<u>0</u> . 007
<u>16~17</u>	0.021	0.024	0.007	0.006	0.013	0.048	0.026	0.021	0.048	0.006
<u>17~18</u>	0.029	0.024	0.009	0.006	0.019	0.040	0.044	0.024	0.044	0.006
<u>18~19</u>	0.027	0.025	0.008	0.006	0.018	0.035	0.036	0.022	0.036	0.006
19~20	0.029	0.031	0.008	0.009	0.018	0.038	0.031	0.023	0.038	0.008
2 <u>0~21</u>	0.025	0.029	0.009	0.010	0.016	0.035	0.040	0.023	0.040	0.009
<u>21~22</u>	0.019	0.027	0.008	0.012	0.017	0.027	0.028	0.020	0.028	0.008
22~23	0.017	0.021	0.007	0.012	<u>0. 018</u>	0.023	<u>0. 020</u>	0.017	0.023	0.007
23~0	0.013	0.024	0.005	0.013	0.010	0.025	0.023	0.016	0.025	0.005
<u>平均值</u>	0.019	0.024	0.012	0.008	0.011	0.027	0.026	0.018		<u>' </u>
最大值	<u>0. 029</u>	0.031	0.027	0.013	<u>0. 019</u>	0.048	0.044	!	0.048	!
最小値	0.008	0.015	0.005	0.004	0.005	0.009	0.014		1	0.004

表2.1-1(3) 大気質現地調査結果(二酸化窒素、秋季)

平成25年11	月24日~11	月30日								単位:ppm
	11月24日	11月25日	11月26日	11月27日	11月28日	11月29日	11月30日	平均値	最大値	最小値
時 刻	(目)	(月)	(火)	(水)	(木)	(金)	(土)	十均恒	取八胆	取小胆
0~1	0.037	0.020	0.020	0.012	0.021	0.016	0.015	0.020	0.037	0.012
1~2	0.028	0.022	0.029	0.013	_0 <u>.020</u>	0.016	0.015	0.020	0.029	0.013
2~3	0.018	0.021	0.028	0.011	0.024	0.017	0.016	0.019	0.028	0.011
3~4	0.016	0.037	0.026	0.012	0.024	0.015	0.018	0.021	0.037	0.012
4~5	0.012	0.034	0.026	0.018	0.026	0.020	0.020	0.022	0.034	0.012
5~6	0.012	0.032	0.028	0.027	0.032	0.026	0.023	0.026	0.032	0.012
$6 \sim 7$	0.015	0.034	0.027	0.027	0.037	0.032	0.027	0.028	0.037	0.015
<u>7∼8</u>	0.017	_0 <u>.036</u>	0.026	0.027	<u>0. 036</u>	0.034	0. 025	0.029	<u>0.036</u>	0.017
8~9	0.018	0.035	0.025	0.029	0. 035	0.036	0.021	0.028	0.036	0.018
9~10	0.017	0.038	0.024	0.034	0.032	0.033	0.017	0.028	0.038	0.017
_1 <u>0~11</u>	0.018	0.046	0.023	0.027	<u>0. 031</u>	0.031	0.015	0.027	0.046	0.015
_1 <u>1~12</u>	0.016	0.052	<u>0.017</u>	0.027	0.032	0.030	<u>0.015</u>	_0. 027 _	<u>0.052</u>	0.015
12~13	0.013	0.046	0.014	0.028	0.029	0.026	0.015	0.024	0.046	0.013
13~14	0.011	0.045	0.018	<u>0. 027</u>	0.026	0.024	0.024	0.025	0.045	<u>0.011</u>
$14 \sim 15$	0.008	0.046	0.022	0.028	0.028	0.025	0.026	0.026	0.046	0.008
$15 \sim 16$	0.007	0.044	0.020	0.028	0.029	0.027	0.030	0.026	0.044	0.007
<u>16∼17</u>	0.006	<u>0. 039</u>	0.017	<u>0. 029</u>	0.021	<u>0. 025</u>	0.035	0. 025	0.039	<u>0.006</u>
$17 \sim 18$	0.016	0.028	0.015	0.030	0.015	0.027	0.036	0.024	0.036	0.015
18~19	0.024	0.022	0.015	0.030	0.012	0.026	0.039	0.024	0.039	0.012
19~20	0.020	<u>0.017</u>	0.013	0.029	0.010	<u>0.030</u>	0.036	0.022	0.036	0.010
20~21	0.023	0.014	0.011	0.026	0.009	0.028	0.035	0.021	0.035	0.009
21~22	0.016	0.013	0.013	0.026	0.008	0.033	0.036	0.021	0.036	0.008
22~23	0.016	0.014	<u>0.010</u>	0.023	<u>0. 009</u>	0.034	0.038	0.021	0.038	0.009
23~0	0.017	0.014	0.010	0.022	0.011	0.024	0.038	0.019	0.038	0.010
	0.017	0.031	0.020	0.025	0.023	0.026	0.026	0.024	Ĺ	<u> </u>
最大值	0. 037	0.052	<u>0. 029</u>	0.034	<u>0. 037</u>	0.036	<u>0. 039</u>		<u>0. 052</u>	!
最小値	0.006	0.013	0.010	0.011	0.008	0.015	0.015			0.006

表2.1-1(4) 大気質現地調査結果(二酸化窒素、冬季)

平成26年1月	月23日~1月:	29 目								単位:ppm
	1月23日	1月24日	Ⅰ 1月25日	1月26日	1月27日	1月28日	I 1月29日	平均値	最大値	■ 最小値
時 刻	(木)	(金)	(土)	(目)	(月)	(火)	(水)	一方。但	1 取八胆	取小胆
0~1	0.021	0.040	0.050	0.016	0.005	0. 039	0.009	0.026	0.050	0.005
1~2	0.023	0.043	0.049	<u>0.015</u>	0.004	0.048	0.008	0.027	0.049	0.004
2~3	0.027	0.042	0.047	0.017	0.005	0.048	0.007	0.028	0.048	0.005
3~4	0.025	0.039	0.042	0.018	0.006	0.042	0.007	0.026	0.042	0.006
4~5	0.016	0.038	0.042	0.012	0.008	0.036	0.009	0.023	0.042	0.008
<u>5~6</u>	0.016	0.038	0.043	0.012	0.010	0.036	0.011	0.024	0.043	0.010
6~7	0.024	0.037	0.052	0.015	0.013	0.039	0.014	0.028	0.052	0.013
<u>7~8</u>	0.036	0.037	<u>0.062</u>	0.026	<u>0. 016</u>	0.041	<u>0. 017</u>	0.034	0.062	0.016
8~9	0.034	0.031	<u>0. 059</u>	0.027	<u>0. 014</u>	0.043	<u>0. 016</u>	0.032	<u>0. 059</u>	0.014
9~10	0.034	0.034	0.054	0.029	0.012	0.049	0.016	0.033	0.054	0.012
10~11	0.023	0.038	<u>0.062</u>	0.029	0.010	0.038	0.016	0.031	0.062	0.010
<u>11~12</u>	0.019	0.045	0.070	0.017	<u>0. 011</u>	0.029	<u>0.015</u>	0.029	0.070	0.011
12~13	0.017	0.049	0.075	0.009	0.011	0.027	0.018	0.029	0.075	0.009
13~14	0.022	0.052	0 <u>084</u>	0.005	0 <u>.015</u>	<u>0. 027</u>	0 <u>. 028</u>	0.033	0.084	0.005
<u>14~15</u>	0.031	<u>0. 053</u>	0 <u>.096</u>	<u>0.004</u>	<u>0.018</u>	<u>0. 032</u>	0.034	<u>0. 038</u>	0.096	0.004
<u>15~16</u>	0.033	0.040	0.104	0.003	0.020	0.035	0.037	0.039	0.104	0.003
16~17	0.040	0.048	0.094	0.004	0.031	0.038	0.045	0.043	0.094	0.004
17~18	0.046	<u>0.050</u>	0.089	0.004	0.046	<u>0.047</u>	0.052	0.048	0.089	0.004
18~19	0.051	0.053	0.087	0.005	0.050	0.047	0.048	0.049	0.087	0.005
19~20	0.039	0.049	0.082	0.005	0.041	0.038	0.039	0.042	0.082	0.005
20~21	0.028	0.054	0.072	0.005	0.032	0.038	0.036	0.038	0.072	0.005
21~22	0.027	0.051	0.059	0.005	0.027	0.030	0.040	0.034	0.059	0.005
22~23	0.033	0.052	0.058	0.005	0.027	0.041	0.044	0.037	0.058	0.005
23~0	0.041	0.052	0.060	0.005	0.031	0.023	0.047	0.037	0.060	0.005
平均值	0.029	0.044	0.066	0.012	0.019	0.038	0.026	0.034	<u> </u>	<u> </u>
<u>最大値</u>	0.051	0.054	0. 104	0.029	0.050	0.049	0.052	<u> </u>	0.104	<u> </u>
最小値	0.016	0.031	0.042	0.003	0.004	0.023	0.007		1	0.003

表2.1-2(1) 大気質現地調査結果(浮遊粒子状物質、春季)

平成26年5月	月23日~5月	29日								単位:mg/m ³
	5月23日	5月24日	5月25日	5月26日	5月27日	5月28日	Ⅰ 5月29日	平均値	I 最大値	最小値
時 刻	(金)	(土)	(目)	(月)	(火)	(水)	I (木)	平均恒	取八旭	取小胆
0~1	0.011	0.012	0.021	0.033	0.020	0.021	0.049	0.024	0.049	0.011
1~2	0.007	0.009	0.020	0.027	_0 <u>.025</u>	0.020	0.047	0.022	0.047	0.007
2~3	0.011	0.015	0.025	0.029	0.016	0.017	0.047	0.023	0.047	0.011
3~4	0.014	0.018	0.025	0.029	0.011	0.023	0.045	0.024	0.045	0.011
4~5	0.015	0.021	0.027	0.037	0.010	0.025	0.048	0.026	0.048	0.010
5~6	0.016	0.022	0.032	0.043	0.008	0.031	0.060	0.030	0.060	0.008
6~7	0.026	0.027	0.039	0.034	0.008	0.039	0.068	0.034	0.068	0.008
7~8	0.021	0 <u>.028</u>	0.033	0.030	<u>0. 009</u>	0.043	0.064	0.033	0.064	0.009
8~9	0.027	0.031	0.029	0.028	0.010	0.037	0.060	0.032	0.060	0.010
9~10	0.022	0.020	0.027	0.025	0.012	0.045	0.055	0.029	0.055	0.012
10~11	0.025	0.026	0.027	0.025	0.022	0.053	0.047	0.032	<u>0</u> . 053	0.022
11~12	<u>0.017</u>	_0.023 _	<u>0.028</u>	0.023	<u>0. 018</u>	0.041	<u>0.042</u>	_0. 027 _	0.042	0.017
12~13	0.015	0.022	0.035	0.023	0.016	0.041	0.041	0.028	0.041	0.015
<u>13~14</u>	0.022	0.022	_0 <u>.033</u> _	0.023	0 <u>.019</u>	0.047	0.045	0.030	0.047	0.019
14~15	0.016	0.020	0.032	0.021	0.015	0.045	0.038	0.027	0.045	0.015
15~16	0.017	0.020	0.031	0.027	0.016	0. 039	0.043	0.028	0.043	0.016
<u>16∼17</u>	0.014	0.019	0.037	0.029	0.023	<u>0. 033</u>	0.048	0. 029	0.048	0.014
<u>17∼18</u>	0.019	0.020	0.034	0.029	0.025	0.044	0.041	0.030	0.044	0.019
18~19	0.018	0.022	0.032	0.028	0.016	0.037	0.053	0.029	0.053	0.016
19~20	0.011	0.021	0.037	0.033	0.016	0.043	0.061	0.032	0.061	<u>0.011</u>
20~21	0.019	0.017	0.032	0.029	0.017	0.051	0.065	0.033	0.065	0.017
21~22	0.016	0.018	0.034	0.028	0.020	0.058	0.065	0.034	0.065	0.016
22~23	<u>0.017</u>	0.021	<u>0.030</u>	0.037	<u>0. 020</u>	0.053	<u>0.061</u>	0.034	0.061	0.017
23~0	0.017	0.022	0.029	0.028	0.022	0.054	0.056	0.033	0.056	0.017
	0.017	0.021	0.030	0.029	0.016	0.039	0.052	0.029		<u> </u>
最大值_	<u>0. 027</u>	0.031	<u>0. 039</u>	0.043	<u>0. 025</u>	0.058	<u>0.068</u>		0.068	!
最小値	0.007	0.009	0.020	0.021	0.008	0.017	0.038			0.007

表2.1-2(2) 大気質現地調査結果(浮遊粒子状物質、夏季)

平成26年7月	月2日~7月8	目								単位:mg/m ³
	7月2日	7月3日	7月4日	7月5日	7月6日	7月7日	I 7月8日	平均値	■ 最大値	最小値
時 刻	(水)	(木)	(金)	(土)	(目)	(月)	(火)	一方。但	1 取八胆	取力、恒
0~1	0.030	0.039	0.040	0.015	0.029	0.023	0.039	0.031	0.040	0.015
1~2	0.022	0.045	0.037	0.015	0.035	0. 023	0.037	0.031	0.045	0.015
2~3	0.027	0.043	0.032	0.017	0.033	0.021	0.038	0.030	0.043	0.017
3~4	0.023	0.053	0.024	0.014	0.028	0. 025	0.044	0.030	0.053	0.014
4~5	0.021	0.056	0.025	0.014	0.037	0.025	0.049	0.032	0.056	0.014
5~6	0.018	0.054	0.014	0.019	0.048	0.019	0.051	0.032	0.054	0.014
$6\sim7$	0.016	0.052	0.008	0.023	0.040	0.021	0. 039	0.028	0.052	0.008
7∼8	0.024	_0.057	0.017	0.026	0.040	0.023	<u>0. 030</u>	0.031	0.057	0.017
8~9	0.032	_0.056 _	0.013	0.025	0.036	0.024	0.024	_0030	<u>0.056</u>	0.013
9~10	0.028	0.050	0.014	0.026	0.028	0.024	0. 025	0.028	0.050	0.014
10~11	0. 028	0.048	0.024	0.024	<u>0. 029</u>	0.026	0. 027	0.029	0.048	0.024
_1 <u>1~12</u> _	<u>0. 028</u>	_0.047 _	<u>0.019</u>	0.026	<u>0. 021</u>	0.032	<u>0. 022</u>	_0.028 _	0.047	0.019
$12\sim 13$	0.034	0.047	0.017	0.024	0.022	0.030	0.027	0.029	0.047	0.017
13~14	0.029	0.044	0.024	0.019	0.026	0. 025	0.026	0.028	0.044	0.019
$14 \sim 15$	0.039	0.043	0.017	0.029	0.038	0. 033	0.021	0.031	0.043	0.017
15~16	0.044	0.047	0.014	0.018	0.038	0.047	0.026	0.033	0.047	0.014
$16 \sim 17$	0.030	0.046	0.013	0.018	0.026	0.056	0.029	0.031	0.056	0.013
$17 \sim 18$	0.028	0.044	0.013	0.023	0.027	0.056	0.044	0.034	0.056	0.013
18~19	0.029	0.041	0.013	0.032	0.030	0.047	0.036	0.033	0.047	0.013
$19\sim 20$	0.026	0.046	0.022	0.021	0.023	0.040	0.027	0.029	0.046	0.021
20~21	0.028	0.050	0.021	0.021	0.022	0.035	0.026	0.029	0.050	0.021
21~22	0.028	0.048	0.018	0.028	0.023	0.036	0.018	0.028	0.048	0.018
22~23	0.034	0.046	0.018	0.021	0.027	0.034	0.021	0.029	0.046	0.018
23~0	0.035	0.048	0.018	0.023	0.022	0.033	0.023	0.029	0.048	0.018
平均值	0.028	0.048	0.020	0.022	0.030	0.032	0. 031	0.030	Ĺ	<u> </u>
最大値	0.044	0.057	0.040	0.032	0.048	0.056	0.051		0.057	<u> </u>
最小値	0.016	0.039	0.008	0.014	0.021	0.019	0.018			0.008

表2.1-2(3) 大気質現地調査結果(浮遊粒子状物質、秋季)

平成25年11	月24日~11	月 30 日							<u>]</u>	単位:mg/m³
	11月24日	11月25日	11月26日	11月27日	I 11月28日	11月29日	11月30日	平均値	最大値	■ ■ 最小値
時 刻	(日)	(月)	(火)	(水)	1 (木)	(金)	(土)	1 20 匝	双八區	双/17恒
0~1	0.038	0.017	0.006	0.005	0.011	0.005	0.004	0.012	0.038	0.004
1~2	0.050	0.020	0.012	<u>0. 003</u>	0.010	<u>0.010</u>	0.001	0.015	0.050	0.001
2~3	0.033	0. 023	0.019	<u>0. 006</u>	0.011	<u>0. 005</u>	0.000	0.014	0.033	<u>0.000</u>
3~4	0.021	0.039	0.043	0.000	0.018	0.005	0.001	0.018	0.043	0.000
4~5	0.025	0.046	0.044	0.001	0.019	0.012	0.005	0.022	0.046	0.001
<u>5∼6</u>	0.024	0.029	0.037	0.000	0.018	0.010	0.007	0.018	0.037	0.000
$6 \sim 7$	0.015	0.027	0.023	0.006	0.020	0.013	0.005	0.016	0.027	0.005
7∼8	0.004	0.019	0.008	0.002	0.023	0.004	0.000	0.009	0.023	0.000
8~9	0.008	0.018	<u>0. 007</u>	0.003	0.008	0.000	0.000	0.006	<u>0. 018</u>	0.000
9~10	0.017	0.032	0.010	0.002	0.014	0.009	0.000	0.012	0.032	0.000
10~11	0.015	0.036	0.018	0.000	0.015	0.014	0.000	0.014	0.036	0.000
_1 <u>1~12</u> _	<u>0. 023</u>	_0. 037	<u>0.015</u>	_0 <u>.003</u>	<u>0. 009</u>	_0.014	<u>0.002</u>	_0.015 _	<u>0. 037</u>	0.002
$12\sim 13$	0.019	0.030	0.014	0.002	0.007	0.015	0.000	0.012	0.030	0.000
$13 \sim 14$	0.026	0.039	0.012	0.002	0.009	0.005	0.005	0.014	0.039	0.002
$14 \sim 15$	0.023	0.034	0.025	0.006	0.007	0.015	0.007	0.017	0.034	0.006
$15 \sim 16$	0.032	0.022	0.011	0.008	0.007	0.010	0.014	0.015	0.032	0.007
$16 \sim 17$	0.028	0.021	0.008	0.007	0.009	0.013	0.019	0.015	0.028	0.007
$17 \sim 18$	0.031	0.017	0.010	<u>0.010</u>	0.004	0.002	0.016	0.013	_0.031 _	0.002
$18 \sim 19$	0.037	0.014	0.009	0.013	0.006	0.007	0.014	0.014	0.037	0.006
$19\sim 20$	0.028	0.011	0.011	0.014	0.004	0.003	0.018	0.013	0.028	0.003
20~21	0.026	0.023	0.002	0.015	0.005	0.009	0.019	0.014	0.026	0.002
21~22	0.029	0.025	0.003	0.023	0.009	0.008	0.026	0.018	0.029	0.003
22~23	0.022	0.026	0.006	0.015	0.010	0.007	0.012	0.014	0.026	0.006
23~0	0.020	0.021	0.007	0.010	0.008	0.004	0.012	0.012	0.021	0.004
平均值	0.025	0.026	0.015	0.007	0.011	0.008	0.008	0.014	Ĺ	<u> </u>
最大値_	0.050	0.046	0.044	0.023	0.023	0.015	0.026		0.050	<u> </u>
最小値	0.004	0.011	0.002	0.000	0.004	0.000	0.000		[0.000

表2.1-2(4) 大気質現地調査結果(浮遊粒子状物質、冬季)

平成26年1月23日~1月29日 単位										単位:mg/m³
	1月23日	1月24日	I 1月25日	1月26日	I 1月27日	1月28日	1月29日	平均値	最大値	■ ■ 最小値
時 刻	(木)	(金)	(土)	(目)	I (月)	(火)	(水)	十~7匝	双八匝	叔/11恒
0~1	0.001	0.021	0.045	0.015	0.000	0.016	0.007	0.015	0.045	0.000
1~2	0.005	<u>0. 006</u>	0.020	0.014	0.004	0. 022	0.012	0.012	0.022	0.004
2~3	0.006	0.008	0.021	0.014	0.005	0.015	0.020	0.013	0.021	0.005
3~4	0.010	0.007	0.033	0.023	0.001	0.003	0.003	0.011	0.033	0.001
4~5	0.004	0.004	0.042	0.017	0.003	0.009	0.003	0.012	0.042	0.003
<u>5~6</u>	0.001	0.007	0.037	0.010	0.001	0.012	0.003	0.010	0.037	0.001
6~7	0.000	0.012	0.029	0.002	0.003	0.014	0.003	0.009	0.029	0.000
<u>7∼8</u>	<u>0.003</u>	0.021	0.011	0.000	<u>0. 000</u>	0.012	0.004	0.007	<u>0.021</u>	0.000
8~9	0.001	0.004	0.017	0.007	0.000	0.018	0.004	0.007	0.018	0.000
9~10	0.003	0.007	0.024	0.009	0.000	0.019	0.002	0.009	0.024	0.000
<u>10~11</u>	<u>0.001</u>	0.006	0.048	0.006	<u>0. 001</u>	0.009	<u>0.000</u>	0.010	0.048	0.000
11~12	0.000	0.008	0.062	0.014	0.003	0.003	0.000	0.013	0.062	0.000
12~13	0.008	0.009	0.070	0.010	0.002	0.010	0.000	0.016	0.070	0.000
<u>13~14</u>	0.016	<u>0. 037</u>	0 <u>.089</u>	0.002	0 <u>.003</u>	<u>0. 002</u>	0.006	0.022	0.089	0.002
14~15	0.013	0.048	0.062	0.004	0.002	0.000	0.005	0.019	0.062	0.000
15~16	0.027	0.020	0.073	0.005	0.006	0.000	0.004	0.019	0.073	0.000
16~17	0.028	0.009	0.092	<u>0. 001</u>	0.006	<u>0. 001</u>	0.014	0.022	0.092	0.001
17~18	0.038	0.013	0.089	0.008	0.007	0.008	0.028	0.027	0.089	0.007
18~19	0.026	0.032	0.086	0.005	0.009	0.011	0.021	0.027	0.086	0.005
<u>19~20</u>	0.011	0.023	0.069	0.004	0.014	0.022	0.007	0.021	0.069	0.004
20~21	0.020	0.028	0.068	0.000	0.023	0.017	0.025	0.026	0.068	0.000
21~22	0.016	0.049	0.091	0.000	0.020	0.009	0.013	0.028	0.091	0.000
22~23	0.013	0.041	0. 083	0.002	<u>0.011</u>	0.008	0.002	0.023	0.083	0.002
23~0	0.006	0.030	0.065	0.000	0.012	I 0.018	0.007	0.020	0.065	0.000
平均值_	0.011	0.019	0.055	0.007	0.006	0.011	0.008	0.017		<u> </u>
最大值_	0.038	0.049	0.092	0.023	<u>0. 023</u>	0.022	0.028		<u>0. 092</u>	!
最小値	0.000	0.004	0.011	0.000	0.000	0.000	0.000		1	0.000

表2.1-3(1) 大気質現地調査結果(オゾン、春季)

平成26年5月	月23日~5月	29日								単位:ppm
	5月23日	5月24日	1 5月25日	5月26日	I 5月27日	5月28日	5月29日	平均値	最大値	最小値
時 刻	(金)	(土)	1 (日)	(月)	I (火)	(水)	(木)	1 4 12	- AC / CIE	> X - 7 ES
0~1	0.038	0.024	0.040	0.028	0.028	0.027	0.018	0.029	0.040	0.018
1~2	0.039	0.028	0.036	0.025	0.017	<u>0. 018</u>	0.024	0.027	_0.039	0.017
2~3	0.038	0.026	0.034	<u>0.021</u>	0.014	0.024	0.016	0.025	0.038	0.014
3~4	0.035	0.013	0.031	0.018	0.023	0.024	0.016	0.023	0.035	0.013
4~5	0.029	0.006	0.032	0.005	0.027	0.022	0.005	0.018	0.032	0.005
<u>5~6</u>	<u>0. 035</u>	0.003	0.029	0.005	0.023	0.026	0.009	0.019	<u>0.035</u>	0.003
<u>6∼7</u>	0.029	0.013	0.031	0.010	0.013	0.028	0.019	0.020	0.031	0.010
<u>7∼8</u>	0.030	0.023	0.033	0.021	0.017	0.023	0.027	0.025	0.033	0.017
8~9	0.030	0.027	0. 036	0.025	0.022	0.030	0.027	0.028	<u>0.036</u>	0.022
9~10	0.029	0.026	0.042	0.029	0.026	0.037	0.035	0.032	0.042	0.026
10~11	0.031	0.034	0.042	0.028	0.030	0.051	0.044	0.037	0.051	0.028
<u>11~12</u>	0.036	0.046	0.037	0.031	<u>0. 037</u>	0.062	0.054	0.043	0.062	0.031
12~13	0.041	0.046	0.042	0.031	0.044	0.056	0.059	0.046	0.059	0.031
13~14	0.050	0.046	0.048	0.027	0.052	0.046	0.053	0.046	0.053	0.027
14~15	_0.051	0.049	0.049	0.024	0 <u>052</u>	0.046	0.039	0.044	_0 <u>.052</u> _	0.024
$15 \sim 16$	0.052	0.050	0.047	0.021	0.038	0.045	0.038	0.042	0.052	0.021
$16 \sim 17$	0.037	0.047	0.051	0.016	0.023	0.044	0.034	0.036	0.051	0.016
$17 \sim 18$	0.034	0.045	0.040	0.018	0.020	<u>0. 039</u>	0.031	0.032	0.045	0.018
18~19	0.029	0. 037	0.040	0.020	0.009	0.043	0.014	0.027	0.043	0.009
19~20	0.031	0.037	0.032	0.022	0.011	0.045	0.011	0.027	0.045	0.011
20~21	0.031	0.048	0.033	0.023	0.027	0.029	0.008	0.028	0.048	0.008
21~22	0.031	0.046	0.030	0.022	0. 027	0.017	0.004	0.025	0.046	0.004
22~23	0.028	0.042	0.031	0.023	0.024	0.022	0.005	0.025	0.042	0.005
23~0	0.024	0.040	0.030	0.027	0.022	0.018	0.012	0.025	0.040	0.012
平均值	0.035	0.033	0.037	0.022	0. 026	0.034	0.025	0.030	Ĺ	<u> </u>
最大値	0.052	0.050	0.051	0.031	0.052	0.062	0.059		0.062	<u> </u>
最小値	0.024	0.003	0. 029	0.005	0.009	0.017	0.004		[0.003

表2.1-3(2) 大気質現地調査結果(オゾン、夏季)

平成26年7月	月2日~7月8	3日								単位:ppm
	7月2日	7月3日	7月4日	7月5日	7月6日	7月7日	7月8日	平均値	最大値	最小値
時 刻	(水)	(木)	(金)	(土)	1 (目)	(月)	(火)	十均恒	取八胆	取小胆
0~1	0.029	0.021	0.017	0.043	0.017	0.023	0.000	0.021	0.043	0.000
1~2	0.018	0.021	0.016	0.041	0.023	0.021	0.000	0.020	0.041	0.000
2~3	0.018	0.020	0.021	0.038	0.017	0.025	0.000	0.020	0.038	0.000
3~4	0.018	0.011	0.027	0. 037	0.019	0.018	0.000	0.019	0.037	0.000
4~5	0.014	0.005	0.029	0.038	0.012	0.016	0.000	0.016	0.038	0.000
5~6	0.014	0.005	0. 035	0.036	0.012	0.018	0.002	0.017	0.036	0.002
$6\sim7$	0.015	0.011	0.036	0.036	0.018	0.014	0.008	0.020	0.036	0.008
7∼8	0.012	0.016	0.031	0.034	0.022	0.012	0.018	0.021	0.034	0.012
8~9	0.018	0.016	0.032	0.034	0.029	0.012	0.031	0.025	0.034	0.012
9~10	0.025	0.026	0.037	0.035	0. 038	0.010	0.034	0.029	0.038	0.010
10~11	0.042	0.027	0.040	0.034	0.046	0.009	0.041	0.034	0.046	0.009
11~12	0.052	0.032	0.041	0.034	0.042	0.008	0.056	0.038	0.056	0.008
12~13	0.076	0.035	0.046	0.034	0.051	0.015	0.069	0.047	0.076	0.015
<u>13~14</u>	0.077	0.029	0.044	0. 036	0.047	0.017	0.071	0.046	0.077	0.017
14~15	0.108	0.020	0.042	0. 039	0.058	0.007	0.075	0.050	0.108	0.007
$15 \sim 16$	0.071	0.019	0.042	0.041	_0 <u>.046</u>	0.004	0 <u>.070</u>	0.042	0.071	0.004
$16 \sim 17$	0.032	0.019	0.042	0.043	0.033	0.001	0.056	0.032	0.056	0.001
$17 \sim 18$	0.020	0.015	0.041	0.040	0.025	0.000	0.049	0.027	0.049	0.000
18~19	0.017	0.012	0.041	<u>0. 036</u>	0.023	<u>0. 000</u>	0.040	0.024	0.041	0.000
<u>19~20</u>	0.011	0.006	0.041	0.031	0.022	0.000	0.029	0.020	0.041	0.000
20~21	0.014	0.007	0.038	0.025	0.022	0.000	0.009	0.016	0.038	0.000
21~22	0.017	0.009	0. 038	0.018	0.020	0.006	0.019	0.018	0.038	0.006
22~23	0.018	0.014	0.041	0.015	0.018	0.004	0.028	0.020	0.041	0.004
23~0	0.023	0.014	0.042	0.012	0.025	I 0.000	0.025	0.020	0.042	0.000
平均值	0.032	0.017	<u>0. 036</u>	0.034	0.029	0.010	<u>0.030</u>	0.027		<u>! </u>
最大值_	0.108	0.035	0.046	0.043	0.058	0.025	0. 075		0.108	<u>!</u> _
最小値	0.011	0.005	0.016	0.012	0.012	0.000	0.000		{	0.000

表2.1-3(3) 大気質現地調査結果(オゾン、秋季)

平成25年11	月24日~11	月 30 日								単位:ppm
	11月24日	11月25日	11月26日	11月27日	I 11月28日	11月29日	11月30日	平均値	最大値	最小値
時 刻	(目)	(月)	(火)	(水)	I (木)	(金)	(土)	十名區	双八直	叔/11恒
0~1	0.002	0.018	0.023	0.027	0.026	0.021	0.021	0.020	0.027	0.002
1~2	0.006	0.015	0.012	0. 025	0.027	0.020	0.020	0.018	0.027	0.006
2~3	_0.016	0.013	0.005	<u>0. 027</u>	0.021	0.018	0.019	0.017	0.027	0.005
3~4	0.020	0.003	0.000	0.025	0.020	0.019	0.016	0.015	0.025	0.000
4~5	0.023	0.002	0.001	0.018	0.017	0.014	0.013	0.013	0.023	0.001
<u>5∼6</u>	0.019	0.002	0.001	0.010	<u>0. 009</u>	0.006	<u>0.010</u>	_0.008 _	0.019	0.001
$6 \sim 7$	0.014	0.002	0.006	0.011	0.005	0.001	0.007	0.007	0.014	0.001
7∼8	0.013	0.002	0.009	0.011	0.006	0.004	0.014	0.008	0.014	0.002
8~9	0.018	0.005	<u>0.016</u>	0.009	<u>0</u> . 009	0.005	<u>0.020</u>	0.012	0.020	0.005
9~10	0.024	0.006	0.021	0.008	0.014	0.011	0.026	0.016	0.026	0.006
10~11	0.029	0.004	0.026	0.021	0.016	0.015	0.030	0.020	0.030	0.004
11~12	0.036	0.003	0.034	0.025	0.019	0.018	0.032	0.024	0.036	0.003
$12\sim 13$	0.041	0.003	0.038	0.022	0.025	0.022	0.032	0.026	0.041	0.003
$13 \sim 14$	0.047	0.004	0.036	0.024	0.024	0.025	0.024	0.026	0.047	0.004
14~15	_0.051	0.007	0.030	0.025	0 <u>0</u> 19	0.022	0.023	0.025	0.051	0.007
$15 \sim 16$	0.053	0.007	0.026	0.021	0.017	0.017	0.013	0.022	0.053	0.007
$16 \sim 17$	0.047	0.010	0.026	0.017	0.021	0.016	0.007	0.021	0.047	0.007
$17 \sim 18$	0.027	0.023	0.026	0.016	0.029	0.012	0.005	0.020	0.029	0.005
18~19	0.018	0.029	0.024	0.018	0.031	0.012	0.004	0.020	0.031	0.004
19~20	0.023	0.037	0.025	0.020	0.032	0.007	0.007	0.022	0.037	0.007
20~21	0.016	0.041	0.028	0.024	0.032	0.009	0.006	0.022	0.041	0.006
21~22	0.027	0.037	0.025	0.022	0.033	0.004	0.005	0.022	0.037	0.004
22~23	0.025	0.036	0.030	0.027	0.031	0.002	0.001	0.022	0.036	0.001
23~0	0.021	0.032	0.028	0.027	0.027	0.013	0.001	0.021	0.032	0.001
平均值	0.026	0.014	0.021	0.020	0.021	0.013	0.015	0.018		
最大値	0.053	0.041	0.038	0.027	0.033	0.025	0.032		0.053	<u> </u>
最小値	0.002	0.002	0.000	0.008	0.005	0.001	0.001			0.000

表2.1-3(4) 大気質現地調査結果(オゾン、冬季)

平成26年1月	月23日~1月	29日								単位:ppm
	1月23日	1月24日	I 1月25日	1月26日	I 1月27日	1月28日	1月29日	平均値	最大値	- - 最小値
時 刻	(木)	(金)	1 (土)	(目)	I (月)	(火)	(水)	十均恒	取八胆	取力、阻
0~1	0.021	0.003	0.001	0.032	0.035	0.003	0.033	0.018	0.035	0.001
1~2	0.018	0.001	0.001	0.026	0.034	0.001	0.033	0.016	0.034	0.001
2~3	0.015	0.002	0.002	0.023	0.035	0.001	0.034	0.016	0.035	0.001
3~4	0.017	0.004	0.001	0.022	0.035	0.001	0.034	0.016	0.035	0.001
4~5	0.027	0.002	0.001	0.028	0.032	0.004	0.033	0.018	0.033	0.001
5~6	0.025	0.001	0.001	0.029	0.029	0.003	0.031	0.017	0.031	0.001
$6 \sim 7$	0.018	0.001	0.001	0.025	<u>0</u> . 031	0.000	0.029	0.015	0.031	0.000
7∼8	0.010	0.003	0.001	0.016	0.025	0.002	0.027	0.012	0.027	0.001
8~9	0.015	0.012	0.002	0.019	0.029	0.004	0.030	0.016	0.030	0.002
9~10	0.018	0.013	0.003	0.014	0.032	0.005	0.031	0.016	0.032	0.003
10~11	0.026	0.013	0.003	0.017	0.033	0.016	0.032	0.020	0.033	0.003
11~12	0.027	0.009	0.004	0.032	0.032	0.022	0.033	0.023	0.033	0.004
12~13	0.030	0.008	0.005	0.041	0.032	0.025	0.030	0.024	0.041	0.005
$13 \sim 14$	0.025	0.009	0.006	0.043	0.029	0.025	0.022	0.022	0.043	0.006
$14 \sim 15$	0.020	0.008	0.004	0.040	0.028	0.022	0.020	0.020	0.040	0.004
<u>1</u> 5∼16	0.018	<u>0. 015</u>	0.002	0.040	_0 <u>.026</u>	<u>0. 017</u>	_0 <u>.020</u> _	0.020	0.040	0.002
$16 \sim 17$	0.010	0.009	0.002	0.038	0.015	0.012	0.010	0.014	0.038	0.002
$17 \sim 18$	0.002	0.006	0.002	0.037	0.003	0.003	0.003	0.008	0.037	0.002
<u>1</u> 8∼19	0.001	<u>0. 003</u>	0.002	<u>0. 036</u>	0.001	<u>0. 004</u>	0.005	0.007	_0 <u>.036</u> _	0.001
$19 \sim 20$	0.011	0.004	0.002	0. 036	0.008	0.012	0.012	0.012	0.036	0.002
20~21	0.015	0.002	0.001	0.037	0.015	0.011	0.013	0.013	0.037	0.001
21~22	0.015	0.001	0.001	0.037	0.019	0.017	0.008	0.014	0.037	0.001
22~23	0.007	0.001	0.001	0.035	0.018	0.002	0.001	0.009	0.035	0.001
23~0	0.003	0.001	0.005	0.035	0.012	0.026	0.001	0.012	0.035	0.001
平均值	0.016	0.005	0.002	0.031	0.025	0.010	0.022	0.016		
最大値	0.030	0.015	0.006	0.043	0.035	0.026	0.034		0.043	!
最小値	0.001	0.001	0.001	0.014	0.001	0.000	0.001		_ <i></i>	0.000

表2.1-4(1) 大気質現地調査結果(PM2.5、春季)

平成26年5月	月23日~5月	29日							単	位: μg/m ³
	5月23日	5月24日	Ⅰ 5月25日	5月26日	1 5月27日	5月28日	5月29日	平均値	最大値	最小値
時 刻	(金)	(土)	(日)	(月)	1 (火)	(水)	(木)	一个沟框	取八胆	取/1、恒
0~1	13.6	14.1	21. 9	30 <u>.</u> 7	17. 9	<u> 15.8</u>	<u>35.8</u>	21.4	35.8	13.6
1~2	13.6	<u> 16.4</u>	<u>30. 3</u>	24.4	19.3	<u> 18.6</u>	32. <u>5</u>	22.2	<u>32. 5</u>	<u>13.6</u>
2~3	8.8	<u>13.9</u>	27. <u>9</u>	<u>18.0</u>	15. 9	<u>13.5</u>	3 <u>3</u> . 8	18.8	<u>33.8</u>	8.8
3~4	12.6	15. 2	30.4	24.5	14. 3	<u> 16. 2 </u>	<u>35. 3</u>	21.2	35.3	12.6
4~5	8.4	<u> 19. 2</u>	27.8	30.0	12.3	17.8	30.0	20.8	30.0	8.4
<u>5~6</u>	<u> 10.0</u>	1 <u>8.0</u>	<u>31.8</u>	1 <u>33</u> . <u>5</u>	5.3	<u>21.6</u>	<u>39.6</u>	<u>22.8</u>	<u>39.6</u>	<u> 5. 3</u>
<u>6~7</u>	12 <u>.</u> 6	1 <u>5</u> . 9	<u>32.</u> 2	<u> 29. 6</u>	11.7	<u> 25. 2</u>	41.1	<u>24. 0</u>	41.1	11.7
<u>7~8</u>	10.0	<u>13.6</u>	<u>30.8</u>	<u>22. 1</u>	11.4	<u>27. 5</u>	44.5	22.8	44.5	10.0
8~9	13 <u>.</u> _3	<u>22. 2</u>	<u> 29. 4</u>	<u>22. 7</u>	11.4	<u>25. 3</u>	44.6	<u>24. 1</u>	44.6	<u>11.4</u>
9~10	<u> 15. 0</u>	<u>30.6</u>	<u>22.</u> 2	11. <u>5</u>	11.6	33. 7	49.4	<u>24. 9</u>	49.4	11.5
10~11	9. 1	24.8	25.1	<u> 19. 1</u>	9.9	49.1	38.1	<u>25. 0</u>	49.1	9. 1
11~12	9.3	<u>17.3</u>	<u>32. 4</u>	<u> 20. 6</u>	13.9	<u>39. 3</u>	41.9	25.0	41.9	9. 3
12~13	<u>12. 1</u>	<u>16. 3</u>	<u>21. 9</u>	<u> 20. 8</u>	11. <u>9</u>	33.0	3 <u>2</u> . <u>1</u>	<u>21. 2</u>	33.0	<u>11. 9</u>
13~14	<u>17. 3</u>	<u>11. 3</u>	29. <u>5</u>	24.0	12. 7	<u>30. 6</u>	<u>33. 9</u>	22.8	33.9	11.3
14~15	<u>13.4</u>	<u> 20.</u> 0	2 <u>7</u> . <u>6</u>	22 <u>.</u> 2	9.6	<u>29.</u> 7	<u>42.9</u>	<u>23.6</u>	<u>42</u> . <u>9</u> _	9.6
15~16	<u>12. 0</u>	18.5	31. <u>6</u>	<u> 26.</u> 2	<u>13. 8</u>	28.3	3 <u>6</u> . <u>1</u>	23.8	<u>36. 1</u>	<u>12. 0</u>
$16 \sim 17$	19.4	21.9	33. 3	30.0	24. 5	30.8	40.3	28.6	40.3	19. 4
17~18	<u> 19. 4</u>	23.4	3 <u>0</u> . <u>4</u>	32 <u>.</u> 0	21. <u>5</u>	<u>31.</u> 5	<u>40</u> . <u>9</u>	28.4	<u>40</u> . <u>9</u>	19.4
18~19	<u>15. 7</u>	20.0	<u>34. 4</u>	<u> 26.</u> 5	<u>17. 7</u>	35.5	<u>46. 3</u>	28.0	46.3	<u>15. 7</u>
19~20	19.4	21.2	<u>29. 4</u>	22.8	14.3	34.3	<u>60.4</u>	28.8	60.4	14. 3
20~21	<u>13. 5</u>	<u>22. 4</u>	<u>28. 0</u>	<u>22. 0</u>	<u> 18. 6</u>	<u>39. 6</u>	<u>55. 0</u>	<u>28. 4</u>	<u>55.0</u>	<u>13. 5</u>
21~22	15.4	<u>22. 0</u>	<u>25.</u> 3	<u> 28. 8</u>	20. 2	3 <u>9</u> . <u>5</u>	<u>50.</u> 3	28.8	50.3	1 <u>5</u> . <u>4</u>
22~23	15. 2	<u>24. 7</u>	22.4	<u>23. 4</u>	15.7	33.2	48.0	26. 1	48.0	15. 2
23~0	16. 9	27.0	18.8	22.2	15.4	34.2	37.7	24.6	37.7	15.4
<u> 平均値</u>	13.6	19.6	28. 1	24.5	14.6	<u>29. 3</u>	41.3	24.4	Ĺ – – – –	!
<u>最大値</u>	19.4	30.6	34.4	33.5	24. 5	49.1	60.4		60.4	<u> </u>
最小値	8.4	11.3	18.8	11.5	5.3	13.5	30.0		ļ	5.3

表2.1-4(2) 大気質現地調査結果(PM2.5、夏季)

平成26年7月	月2日~7月8	日							単	位: μg/m ³
	7月2日	7月3日	7月4日	7月5日	7月6日	7月7日	7月8日	平均値	最大値	最小値
時 刻	(水)	(木)	(金)	(土)	1 (目)	(月)	(火)	十均恒	取八胆	取力、恒
0~1	<u>14. 1</u>	19 <u>.</u> 6	16.2	9.5	<u>14. 1</u>	6.7	8.4	12.7	19.6	6.7
$1\sim 2$	11.7	19.8	14.8	5. 2	19.4	6.9	15.0	13.3	19.8	5.2
2~3	13. 3	23.9	16.4	5. 1	16.0	7.2	17.8	14. 2	23.9	5.1
3 <u>~4</u>	<u>11.9</u>	<u> 26.6</u>	1 <u>1</u> . 9	8.3	<u> 17. 7</u>	9.6	<u>17.4</u>	<u>14.8</u>	<u>26.6</u>	8.3
<u>4~5</u>	6.6	<u> 29. 2</u>	<u>12.</u> 0	8. 2	18.0	9.5	21.0	14. 9	29.2	6.6
5~6	11.1	29.9	3.3	6.0	26.0	10.1	16.5	14.7	29.9	3.3
$6\sim7$	8.3	31.0	5.0	8.7	23.8	7.4	<u>17.</u> 0	<u>14. 5</u>	31.0	5.0
<u>7∼8</u>	8.3	38.4	2.8	7.7	19.8	7.6	<u> 16. 3 </u>	14.4	38.4	2.8
8~9	11.2	26.3	2.0	<u>10. 1</u>	19.3	8.0	14.7	13.1	26.3	2.0
9~10	10.2	27.7	6.7	7.3	12.1	8.4	<u> 17. 2 </u>	<u>12.8</u>	<u>27.</u> 7	6.7
<u>10~11</u>	14. 2	31.2	6.6	9. 2	13.8	2.6	<u> 17.</u> 5	<u>13. 6</u>	31.2	2.6
11~12	11.1	26.9	9.4	9.4	6.8	12.4	7.5	11.9	26.9	6.8
12~13	20.4	27.7	4.6	11.8	<u> 14. 5</u>	9.4	12.5	14.4	27.7	4.6
<u>13~14</u>	<u> 18. 4</u>	24.3	<u>8. 1</u>	9.8	<u>8. 6</u>	6. 7	<u>10. 9</u>	<u>12.4</u>	24.3	6.7
14~15	22.4	25.9	4.0	8. 7	<u> 19. 0</u>	13.2	8.3	14.5	25.9	4.0
15~16	<u> 18. 4</u>	<u>24.</u> 7	<u>3.5</u>	<u>10.8</u>	<u> 15. 2</u>	<u>21.0</u>	<u>7.9</u>	<u> 14.5</u>	<u>24. 7</u>	3.5
16~17	<u> 16. 9</u>	<u>30.</u> 7	5.5	6.2	<u>11.9</u>	19.5	<u>19. 4</u>	15 <u>.</u> 7	<u>30. 7</u>	5.5
<u>17~18</u>	<u>14. 6</u>	28.2	2.5	4.3	4.2	19.8	<u>27. 0</u>	14.4	28. 2	2.5
18~19	<u>10</u> . <u>0</u>	<u>23.</u> 2	3.8	7. <u>_</u> 9	<u>14. 5</u>	<u> 18.9</u> _	<u>17.8</u>	<u>13.7</u>	<u>23. 2</u>	3.8
<u>19~20</u>	<u>18. 2</u>	<u>20.</u> 2	<u>10. 3</u>	7. <u>7</u>	<u>5. 9</u>	15 <u>.</u> 1	9.7	<u>12.4</u>	20.2	5.9
20~21	<u> 15. 2</u>	<u>23. 0</u>	4.0	<u>13. 9</u>	8.8	1 <u>2. 2</u>	8.9	<u>12. 3</u>	23.0	4.0
21~22	<u> 17. 1</u>	1 <u>7</u> . 0	9.1	1 <u>0</u> . <u>9</u>	6.3	1 <u>10.5</u>	7.8	<u>11.2</u>	<u>17.1</u>	6.3
22~23	15.4	<u> 20. 8</u>	2.8	1 <u>4</u> . <u>6</u>	5.5	1 <u>8</u> . <u>0</u>	12.3	<u>12.8</u>	20.8	2.8
23~0	17.6	28.4	6.9	10.8	7.6	15.6	12.4	14. 2	28.4	6.9
平均值_	14.0	<u> 26. 0</u>	7.2	8.8	13.7	<u>11.5</u>	14.2	<u>13. 6</u>		<u>' </u>
最大值_	22.4	38.4	16.4	14.6	26.0	21.0	27.0		38.4	<u> </u>
最小値	6.6	17.0	2.0	4.3	4.2	2.6	7.5		[2.0

表2.1-4(3) 大気質現地調査結果(PM2.5、秋季)

平成25年11	月24日~11	月 30 日							単	位: μg/m ³
	11月24日	11月25日	11月26日	11月27日	I 11月28日	11月29日	11月30日	平均值	最大値	最小値
時 刻	(目)	(月)	(火)	(水)	I (木)	(金)	(土)	十一一	双八匝	取/11恒
0~1	23. 4	9. 9	8.0	2. 2	4.1	<u>-0.9</u>	<u>-0. 1</u>	6. 7	23.4	<u>-0.9</u>
_1 <u>~2</u> _	<u>31. 7</u>	<u>14.</u> 0	<u>10.4</u>	4.6	<u>5.3</u>	3.4	<u>-1</u> . <u>5</u>	9.7	<u>31. 7</u>	<u>-1.5</u>
2~3	<u>19. 4</u>	12.8	<u>23. 3</u>	2.5	7.9	5.0	<u>-1.9</u>	9. 9	23.3	<u>-1.9</u>
3~4	<u>11.3</u>	<u>27. 3</u>	<u>23. 4</u>	2.3	6.4	2.4	2.8	10.8	27.3	2.3
4~5	7.4	29.6	19.4	0.6	12.9	2.1	1.8	10.5	29.6	0.6
<u>5~6</u>	7.8	<u>22. 1</u>	<u> 15. 2</u>	<u>4. 5</u>	8.0	I <u>5. 1</u>	_2 <u>.</u> 8	8.6	<u>22. 1</u>	<u>-2.8</u>
$6\sim7$	8.2	<u> 15. 8</u>	8. 9	<u>-0. 9</u>	9.2	1 <u>3.8</u>	<u>-6. 3</u>	5. 5	<u> 15. 8</u>	<u>-6.3</u>
<u>7∼8</u>	9.2	<u> 16. 0</u>	9.3	3.2	13.9	7.8	1.8	8. 7	16.0	1.8
8~9	9.8	1 <u>5</u> . <u>5</u>	5. <u>6</u>	2.0	8. <u>_</u> 2	<u>5.5</u>	<u>-1.0</u>	6.5	<u> 15.</u> 5	<u>-1</u> . <u>0</u>
<u>9~10</u>	13. 2	<u>19. 8</u>	8.3	1.8	6.7	8.9	3. 7	8. 9	19.8	1.8
<u>10~11</u>	12.0	<u>21.6</u>	5.1	3. 2	9.6	<u>11.7</u>	-0.1	9.0	21.6	-0.1
<u>11~12</u>	6.0	<u> 26. 2</u>	0.6	3. 2	<u>-1.3</u>	<u>-2.6</u>	<u>-1.8</u>	4.3	<u> 26. 2 </u>	<u>-2.6</u>
12~13	4.7	18. 5	<u>3. 1</u>	3.8	2. 7	1.2	0. 9	5.0	<u> 18. 5</u>	0.9
<u>13~14</u>	6.9	23.0	8.8	1.1	<u>5. 1</u>	-0.2	2. 5	6. 7	23.0	<u>-0.2</u>
<u>14~15</u>	<u>10</u> . <u>2</u>	<u>14.</u> 8	1 <u>1</u> . <u>6</u>	5.8	1.1	6.9	<u>7.8</u>	8.3	<u>14.8</u>	1.1
15~16	<u>15. 0</u>	<u> 15. 2</u>	6. 7	1.1	0.3	-0 <u>.</u> 3	<u>6. 4</u>	6.3	<u>15. 2</u>	<u>-0.3</u>
$16 \sim 17$	<u>18. 0</u>	10.7	<u>-0. 1</u>	1.1	3.1	1.2	8.6	6. 1	18.0	<u>-0.1</u>
<u>17∼18</u>	<u> 18. 5</u>	9.3	1.0	5.1	0.7	1.2	0.3	5.2	<u>18. 5</u>	0.3
<u>18~19</u>	<u>21</u> . <u>1</u>	2. 7	0.3	5.3	3.4	1.6	2.9	5.3	<u>21. 1</u>	0.3
19~20	<u>22. 5</u>	8.4	<u>-3. 3</u>	9.1	<u>-1.6</u>	4.5	7. 7	6.8	22. 5	-3 <u>.</u> 3
<u>20~21</u>	<u> 19. 1</u>	5.3	2. 7	<u>10. 3</u>	2.9	1.9	8. 5	7.2	<u> 19. 1</u>	1.9
21~22	<u>15. 1</u>	2.5	5. 1	4.3	0.2	<u>2. 1</u>	5.8	5. 0	15.1	0.2
22~23	11.1	8.1	1.7	10.8	5.9	4.8	9.8	7. 5	11.1	1.7
23~0	8.5	6.2	-1.7	2.5	7.5	I 1.9	5.8	4. 4	8.5	-1. 7
平均值_	13.8	<u>14. 8</u>	7.2	3. 7	5.1	3.3	2.6	7.2	(!
<u>最大值</u>	31.7	<u>29. 6</u>	23.4	10.8	13.9	<u>11. 7</u>	9.8		31.7	<u> </u>
最小値	4.7	2.5	-3.3	-0.9	-1.6	-2.6	-6.3			-6.3

表2.1-4(4) 大気質現地調査結果(PM2.5、冬季)

平成26年1月	平成26年1月23日~1月29日 単位: $\mu \text{ g/m}^3$											
	1月23日	1月24日	1月25日	1月26日	I 1月27日	1月28日	1月29日	平均值	最大値	- - 最小値		
時 刻	(木)	(金)	(土)	(日)	I (月)	(火)	(水)	一八四	双八區	双方恒		
0~1_	2.4	<u>12.7</u>	3 <u>8</u> . <u>1</u>	<u>10.6</u>	1.4	<u>10.1</u>	0.5	<u>10.8</u>	<u>38. 1</u>	0.5		
1~2	3. 7	16.1	<u>39. 9</u>	15. 7	2. 1	<u>17.4</u>	-1.8	13.3	39.9	-1 <u>.</u> 8		
2~3	3.2	11.2	<u>37. 2</u>	<u> 18. 2</u>	<u>3. 1</u>	13.3	0.7	12.4	37.2	0.7		
3~4	5.8	10.9	<u>34. 9</u>	12.1	<u>-3. 1</u>	21.9	0.8	11.9	34.9	<u>-3. 1</u>		
<u>4~5</u>	0.9	<u>11.7</u>	32.1	6.1	0.3	<u> 19. 4</u>	6. 7	<u>11.0</u>	32.1	0.3		
<u>5~6</u>	<u>-0.3</u>	<u> 15. 7</u>	<u> 30. 9</u>	6.6	3.9	<u> 26. 0</u>	7.2	<u>12. 9</u>	30.9	-0.3		
$6\sim7$	0 <u>.</u> 8	1 <u>5.6</u>	36 <u>.</u> 2	3.5	2.9	1 <u>16. 8</u>	6.9	<u>11.6</u>	<u>36.2</u>	<u>-0.8</u>		
<u>7∼8</u>	2.3	12.2	<u>38. 3</u>	5.8	<u>-0. 1</u>	1 <u>6</u> . <u>7</u>	0.4	<u>10.8</u>	38.3	<u>-0.1</u>		
8~9	3. 7	12.1	42.0	7.4	3.6	<u> 15. 0</u>	3.8	12.5	42.0	3.6		
<u>9~10</u>	6.7	15. 1	<u>48.4</u>	<u>28. 5</u>	4.9	<u> 26. 2</u>	1.6	<u> 18. 8</u>	48.4	1.6		
<u>10~11</u>	2.9	<u> 18. 5</u>	<u>54. 3</u>	<u> 20. 6</u>	1.9	6.4	6. 7	<u> 15. 9</u>	<u>54. 3</u>	1.9		
11~12	2.5	20.8	63.5	10.9	5.1	2.6	8.2	16.2	63.5	2.5		
12~13	5.3	32.6	73.6	<u>-2.5</u>	4.3	0.0	4.7	<u> 16. 9</u>	73.6	-2.5		
<u>13~14</u>	6. 7	<u>35.8</u>	<u>88. 2</u>	4.4	7.2	5.9	1 <u>5.8</u>	23.4	88.2	4.4		
14~15	7.9	<u>35. 1</u>	90.3	10.4	1 <u>11.6</u>	9.2	<u>17. 2</u>	26.0	90.3	7.9		
15~16	<u>12.6</u>	<u> 12.6</u>	92. <u>9</u>	9.0	<u> 10. 0</u>	<u> 16.4</u>	<u>17. 3</u>	24.4	<u>92.9</u>	9.0		
$16 \sim 17$	<u> 16. 7</u>	11.9	92. <u>9</u>	7.8	<u>11.9</u>	6.9	<u>15. 3</u>	23.3	92.9	6.9		
$17 \sim 18$	<u> 19. 5</u>	7.4	94.0	10.5	<u> 16. 3</u>	1.4	<u> 17. 9</u>	23.9	94.0	1.4		
18~19	<u>22. 7</u>	<u>12.3</u>	7 <u>9</u> . <u>0</u>	8.0	<u>15</u> . <u>3</u>	<u> 13.6</u> _	<u>14.8</u>	<u>23.7</u>	<u>79. 0</u>	8.0		
19~20	3.6	<u> 10.8</u>	7 <u>4</u> . <u>3</u>	7.3	<u>13.4</u>	<u> 10. 1</u>	<u>12. 9</u>	<u> 18. 9</u>	74.3	3.6		
20~21	12.2	44.1	92. 5	13.2	13.6	<u>11.3</u>	11.9	28.4	92.5	11.3		
21~22	7.3	38.0	94 <u>.</u> 7	9.3	8.8	1 <u>15.2</u>	11.4	<u> 26. 4</u>	94.7	7.3		
22~23	<u>10.</u> 2	44.8	95 <u>.</u> 3	8.5	5.3	1 <u>18. 2</u>	11.4	<u>27. 7</u>	95.3	5.3		
23~0	23.1	41.4	61.5	6.1	10.7	l 2.5	14.6	22.8	61.5	1 2.5		
平均值_	7.5	20.8	63 <u>.</u> 5	9.9	6.4	12. <u>6</u>	8.6	1 <u>8</u> . <u>5</u>	, 	!		
最大值_	23. 1	44.8	95 <u>.</u> 3	28. 5	16.3	26. 2	17.9		95.3	!		
最小値	-0.8	7.4	30.9	-2.5	-3.1	0.0	-1.8			-3.1		

表2.1-5 大気質現地調査結果(空間線量率)

単位: μ Sv/h

							1 1		
	月日								
秋季	平成25年11月28日(木)	0.07	0.08	0.09	0.08	0.07	0.08		
冬季	平成26年1月23日(木)	0.07	0.07	0.08	0.07	0.07	0.07		
春季	平成26年5月27日(火)	0.06	0.07	0.08	0.07	0.07	0.07		
夏季	平成26年7月4日(金)	0.06	0.07	0.07	0.08	0.08	0.07		

表2.1-6(1) 気象現地調査結果(風向、春季)

平成26年5月23日~5月29日

1 /3,20 - 0)	5月23日~5月 5月23日	5月24日	5月25日	5月26日	5月27日	5月28日	5月29日	calm率
時 刻	(金)	(土)	(日)	(月)	(火)	(水)	(木)	,
0~1	ENE	SW	SW	S	SW	ESE	SSW	0.0
1~2	Е	WSW	SW	S	SW	ENE	SW	0.0
2~3	Е	WSW	SW	S	NNE	Calm	SSW	14.3
3~4	ENE	NW	SW	SSW	NE	ESE	SW	0.0
$4\sim 5$	Е	N	SSW	SW	ENE	ESE	S	0.0
5~6	<u>N</u> E	NNE	SSW	SSW	N	<u>E</u>	S	0.0
6~7	E	N	S	SW	NNW	NNE	S	0.0
7~8	<u>ESE</u>	NE NE	S	SSW_	NNW	S <u>S</u> E	S	0.0
8~9	SE	S	S	<u>SSW</u>	<u>NNW</u>	SSE	S	0.0
9~10	SSE	S	SSW	SSW	NNW	SSW	SSW	0.0
<u>10~11</u>	SSW	SS	S	<u>SSW</u>	N	S	<u>S</u>	0.0
11~12	S	S	<u>S</u>	SSW	NW	S	<u>S</u>	0.0
12~13	SE	S	S	SSW	NNE	S	S	0.0
13~14	S	<u>S</u>	IS	SSW	NW	S	SSW	0.0
<u>14~15</u>	S	S <u>S</u> W	S	SSW_	<u>ENE</u>	S <u>S</u> W	<u></u>	0 <u>.</u> _0
<u>15~16</u>	S	S <u>S</u> W	<u>S</u> S <u>W</u>	S <u>S</u> W	<u>s</u> s <u>w</u>	<u> </u>	<u>S</u> W	0.0
16~17	<u>SSW</u>	SSW	<u>S</u>	<u>SSW</u>	S	S	SSW	0.0
17~18	SSW	SSW	<u>S</u>	SSW	<u>S</u>	<u>s</u> s <u>w</u>	S	0.0
18~19	S	SSW	S	SSW	<u>S</u>	S	SSW	0.0
19~20	S	SSW	SSE	SSW	SE	S	SSW	0.0
20~21	SSW	SSW	S	SSW	S	<u>S</u>	S	0.0
21~22	SSW	SSW	S	SSW	<u>ESE</u>	SSW	S	0.0
22~23	SW	SW	S	SSW	ENE	SSW	SW	0.0
23~0	SW	SW	S	SSW	ESE	SSW	SSW	0.0
calm率	0.0	0.0	0.0	0.0	0.0	4. 2	0.0	0.6

表2.1-6(2) 気象現地調査結果(風向、夏季)

平成26年7月2日~7月8日

	7月2日	7月3日	7月4日	7月5日	7月6日	7月7日	7月8日	calm率
時 刻	(水)	(木)	(金)	(土)	(目)	(月)	(火)	
0~1	ENE	S	SSW	NNE	NNE	S	Calm	14.3
1~2	NE	S	SSW	<u>NNE</u>	NE	S	SSE	0.0
2~3	NE	S	SE	<u>NNE</u>	NNE	S	Calm	14.3
3~4	NE	S	NENE	NNE	<u>ENE</u>	SW	Calm	14. 3
4~5	NNE	S	NNE	NNE	E	<u>S</u>	NNE	0.0
_5~6	<u>Calm</u>	SSW	NNE	NE NE	E	<u> </u>	NNE	14.3
6~7_	<u>S</u> W	<u>S</u>	<u>NNE</u>	NE NE	<u>ENE</u>	<u> </u>	N	00_
7 <u>~8</u>	<u>ESE</u>	SSE	<u>NNE</u>	N <u>N</u> E	<u>ssw</u>	<u> </u>	N	00
8~9	ESE	S	NNE	<u>NNE</u>	SSE	SSE	NE	0.0
9~10	SE	SSE	NNE	NE	SE	SE	S	0.0
10~11	ESE	S	NE	<u>NE</u>	S	<u>SE</u>	SSW	0.0
11~12	SE	S	NNE	NNE	<u>S</u>	S	SE	0.0
<u>12~13</u>	S	S	NNE	<u>NNE</u>	<u>S</u>	WSW	SSE	<u>0.0</u>
13~14	S	S	NNE	ENE	S	SSW	S	0.0
$14 \sim 15$	S	S	N	NE	S	<u>S</u>	S	0.0
$15 \sim 16$	SSW	S	NNE	NE NE	S	SE	S	0.0
16~17	S	<u>SSW</u>	<u>ENE</u>	<u>NNE</u>	S	<u>ESE</u>	S	0.0
17~18	SSW	S	<u>NNE</u>	<u>NE</u>	S	E	<u>S</u>	<u>0.0</u>
18~19	S	S	<u>NNE</u>	<u>ENE</u>	SSW	N	<u> </u>	<u>0.0</u>
19~20	SSW	S	NENE	<u>NE</u>	<u>S</u>	N	SSW	<u>0.0</u>
20~21	S	<u>S</u>	NNE	NE	S	<u>NNE</u>	S	0.0
$21 \sim 22$	S	SSE	NNE	NNE	_S	NNW	SSE	0.0
22~23	S	SSE_	<u>NNE</u>	Calm	S	Calm	S	<u>28. 6</u>
23~0	S	SSW	NE	NNE	S	Calm	S	14.3
calm率	4. 2	0.0	0.0	4. 2	0.0	8.3	12.5	4.2

表2.1-6(3) 気象現地調査結果(風向、秋季)

平成25年11月24日~11月30日

	11月24日	11月25日	11月26日	11月27日	11月28日	11月29日	11月30日	calm率
時 刻	(日)	(月)	(火)	(水)	(木)	(金)	(土)	
0~1	N	<u>NNE</u>	SSW	N	SW	N	N	0.0
1~2	N	N	SSW	N	SW	N	N	0.0
2~3	N	<u>NNE</u>	<u>N</u>	N	SW	N	N	<u>0.0</u>
3~4	N	N	<u>N</u>	N	SW	N	N	0.0
4~5	N	<u>N</u>	N	<u>N</u>	<u> </u>	N	NNE	0.0
5~6	NE	<u>N</u>	NN	<u>N</u>	SW	NNE	N	0.0
6~7	<u>ENE</u>	NNW	N	<u>N</u>	SW	Calm	NNW	14.3
7~8	N	N	NNE	NE	SW	ENE	N	0.0
8~9	<u>NNE</u>	<u>NNW</u>	<u>N</u>	<u>ESE</u>	SW	<u>ESE</u>	N	0.0
9~10	NNE_	NNW	N	SE	WSW	SSE	N	0.0
1 <u>0~11</u>	NNE	SSE	NNW	<u>ESE</u>	SW	SSE	<u>N</u>	<u> </u>
11~12	NW	SE	N	SSE	SSW	SSW	W <u>S</u> W	<u> </u>
12~13	NNE	SE	N	SW	SW	SSW	WSW	0.0
13~14	NE	S	WNW	SSW	<u>WSW</u>	SW	S	0.0
14~15	<u>N</u> NE	SSW	ENE	SW	SW	SW	<u>SSE</u>	0.0
15~16	ENE	<u> </u>	N	<u> </u>	SW	<u>SW</u>	S	0.0
<u>16~17</u>	E	SSE	NNE	SSW	NNE	WSW	S	0.0
17~18	Calm	<u>s</u> s <u>w</u>	<u>N</u>	SW	N <u>N</u> E	<u> </u>	<u>S</u>	<u>14. 3</u>
18~19	<u>E</u> E	S	<u>N</u>	SW	<u>N</u>	<u> </u>	S <u>S</u> W	<u>0</u> . <u>0</u>
19~20	Calm	SSW	N	SW	NNE	WSW	<u>S</u>	<u>14. 3</u>
20~21	ENE	SSW	N	SW	<u>NNE</u>	Calm	S	14.3
<u>21~22</u>	<u>E</u> NE	SSW	_N	SSW	N	W	<u> </u>	0.0
22~23	NE	SSW	N	SSW	N	NNW	SW	0.0
23~0	NNE	SSW	NNE	SSW	N	N	WNW	0.0
主風向	N, NNE	I SSW	N	N, SW	SW	N	N	N
calm率	8.3	0.0	0.0	0.0	0.0	8.3	0.0	2.4

表2.1-6(4) 気象現地調査結果(風向、冬季)

平成26年1月23日~1月29日

		1月23日	1月24日	1月25日	1月26日	1月27日	1月28日	1月29日	calm率
	時 刻	(木)	(金)	(土)	(日)	(月)	(火)	(水)	
1_	0~1	N	N	NNE	SW	N	N	N	0.0
	1~2	N	NNE	N	SSW	N	NNW	N	0.0
1_	2~3	NNW	N	N	SSW	NNW	NNE	N	<u>0</u> . <u>0</u>
1_	3~4	NNW	N	NNE	SSW	N	N	N	0.0
	4~5	NNW	<u>N</u>	<u>Calm</u>	SSW	NNW	N	N	14.3
	5~6	NW	N	<u>ESE</u>	SW	<u>NNW</u>	<u>N</u>	N	0.0
L	6~7	N	<u>N</u>	Calm	SW	N	NE	N	<u>14.3</u>
L	7~8	N	<u>N</u>	Е	SW	N	Е	NNW	0.0
_	8~9	W	NNW	NE	WNW	N	<u>Calm</u>	N	<u>14. 3</u>
_	$9 \sim 10$	NNW	<u>NNE</u>	NE	NN	N	SE	<u>N</u>	<u>0</u> . <u>0</u>
1_	$10 \sim 11$	WNW	SSE _	ENE	NNW	NE	SW	NNW_	<u> </u>
_	11~12	WNW	SSW	SSW	NNW	NE	SSW	N	0.0
	12~13	WNW	SE	S	NNW	SSW	SSW	SE	0.0
L	$13 \sim 14$	S	ESE_	ENE	<u>N</u>	SE	SSW	S	0 <u>.</u> 0_
	$14 \sim 15$	S	SW	Calm	NNW	SE	SSW	SSE	14.3
L	$15 \sim 16$	S	SW	Calm	N	S	SSW	SSW	14. 3
L_	$16 \sim 17$	S	<u>SSW</u>	N	<u>N</u>	S	SW	S	0.0
_	$17 \sim 18$	SSE	SW	<u>E</u>	NNW	SE	SW	S	0.0
_	18~19_	<u>N</u>	SW	<u>N</u>	N	SW	<u> </u>	SSE	0.0
-	1 <u>9~20</u>	N <u>N</u> W	N	L _ N	N	<u>SE</u>	<u> </u>	SE _	<u>0</u> . <u>0</u>
_	20~21	<u>NNW</u>	NW	<u>ENE</u>	<u>N</u>	SE	WSW	ESE	0.0
L	<u>21∼22</u>	N	N	<u>NNW</u>	N	SE	NW	SW	0.0
L	22~23	<u>N</u>	NNW	SSE	N	<u>ESE</u>	N	Calm	14. 3
	23~0	NNE	N	SW	NNW	WSW	N	Calm	14.3
	主風向	N	I N	N	N	N	N	N	N
	calm率	0.0	0.0	16.7	0.0	0.0	4. 2	8.3	4. 2

表2.1-7(1) 気象現地調査結果(風速、春季)

平成26年5月	月23日~5月	29日							単位:	m/sec
	5月23日	5月24日	5月25日	5月26日	5月27日	5月28日	5月29日	平均值	I 最大値	最小値
時 刻	(金)	(土)	(目)	(月)	(火)	(水)	(木)	十名區	1 双八區	双 / 1 / 1 / 1 / 1
0~1	1.7	<u>1. 5</u>	2.1	2.1	2.5	1.6	1.6	1.9	2.5	1.5
1~2	1.8	0.8	2.2	1.7	1.0	0.7	1.8	1.4	2.2	0.7
2~3	1. 5	0.8	2.0	0.8	0.6	0.4	1.1	1.0	2.0	0.4
3~4	1.4	1.2	1.8	1.2	1.0	1.8	1.5	1.4	1.8	1.0
4~5	1.3	0. 9	2.1	1.1	1.4	0.7	0.5	1.1	2. 1	0.5
5~6	1.2	0.5	1.9	1.4	1.9	0.9	1.4	1.3	1. 9	0.5
<u>6∼7</u>	1.4	1.2	2.2	2.1	1.6	0.8	1.5	1.5	2.2	0.8
_7 <u>~8</u>	1.2	0.8	2.7	3.5	2.8	1.6	1.7	2.0	<u>3. 5</u>	0.8
8~9	1.3	1.5	2.0	3.7	2.0	1.7	1.8	2.0	3. 7	1.3
9~10	1.8	2.3	2.6	4.7	2.4	1.5	3.0	2.6	4. 7	1.5
_1 <u>0~11</u> _	2.7	2.9	2.2	5.2	2.2	2.1	3.0	2.9	5. 2	2.1
_1 <u>1~12</u>	2.4	<u>3. 6</u>	2.9	6.1	2.4	3.0	3.0	<u>3.3</u>	6.1	2.4
12~13	2.2	3.8	3.1	5.5	1.8	2.8	3.3	3.2	<u>5. 5</u>	1.8
<u>13~14</u>	2. 2	3. 9	3.3	4.9	1.3	2.6	3.5	3.1	ı <u>4. 9</u>	1.3
14~15	2.4	4. 2	2.7	4.5	0.7	3.0	2.6	2.9	4. 5	0.7
15~16	2.9	4.9	3.1	4.4	2.4	3.0	2.0	3.2	4.9	2.0
$16 \sim 17$	2.8	3. 7	2.2	4.2	2.1	3.5	2.9	3.1	4.2	2.1
17~18	3. 1	3. 7	2.7	3.9	2.1	3.0	2.8	3.0	3. 9	2. 1
18~19	2.6	3. 7	1.9	4.4	1.5	1.9	2.4	2.6	4.4	1.5
19~20	2. <u>_</u> 6	<u>3. 3</u>	1.6	<u>5.0</u>	3.0	2.0	1.8	2.8	50	1.6
20~21	2.3	2. 5	1.6	5.1	1.6	2.0	2.1	2.5	5.1	1.6
21~22	2.8	3.0	1.8	4.4	2.5	2.0	1.8	2.6	4.4	1.8
22~23	2.0	2. 1	2.1	3.6	0.7	2.2	1.1	2.0	3.6	0.7
23~0	1.5	2.5	2.0	2.9	2.0	2.2	0.7	2.0	2.9	0.7
	2.0	2.5	2.3	3.6	1.8	2.0	2.0	2. 3		
最大值_	3. 1	4. 9	3.3	6. 1	3.0	3.5	3.5		6.1	l
最小値	1.2	0.5	1.6	0.8	0.6	0.4	0.5		[0.4

表2.1-7(2) 気象現地調査結果(風速、夏季)

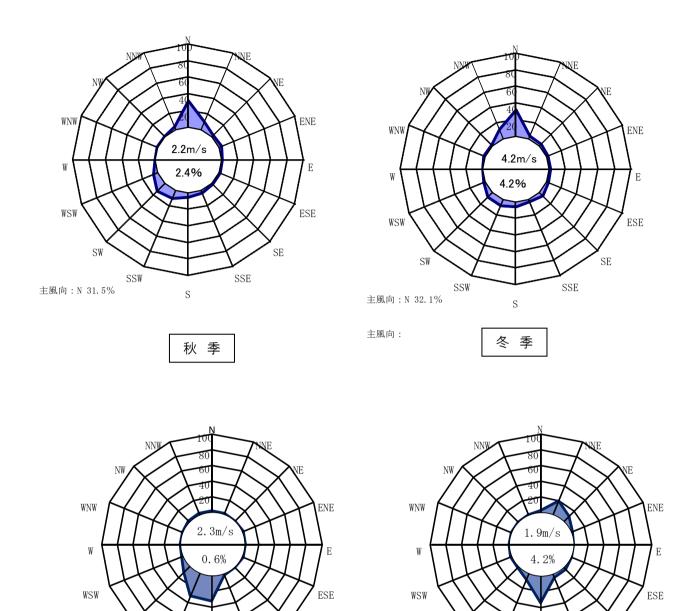

平成26年7月	12日~7月8	日							単位:	m/sec
時刻	7月2日 (水)	7月3日 (木)	7月4日 (金)	7月5日 (十)	7月6日 (日)	7月7日 (月)	7月8日 (火)	平均值	最大値	最小値
0~1	1. 1	1.8	1.8	2. 1	1.4	2. 3	0.1	1.5	2.3	0. 1
1~2	0. 9	1.4	1. 3	2. 1	0.6	2.8	0.6	1.4	2.8	0.6
2~3	1.3	1.6	0.5	2. 2	1.0	2.3	0.0	1.3	2.3	0.0
3~4	1.1	1.7	0.6	1. 9	0.7	2.8	0.3	1.3	2.8	0.3
4~5	0.7	1.0	1.9	1.8	1.1	2. 5	1.2	1.5	2.5	0.7
5~6	0.4	1.4	2.1	1. 9	0.9	2.0	1.2	1.4	2.1	0.4
<u>6∼7</u>	0.8	1.4	2.5	2.2	0.6	1.8	0.7	1.4	2.5	0.6
<u>7∼8</u>	1.4	1.8	1.9	2.1	1.3	2.5	1.6	1.8	<u>2.5</u>	1.3
8~9	1.3	1.8	2.0	2.2	0.7	1.9	1.5	1.6	2.2	0.7
9~10	2.6	2.3	2.1	2.0	1.6	2.0	2.4	2.1	2.6	1.6
10~11	3.3	2.5	1. 9	1.3	2.3	1.8	2.3	2.2	3.3	1.3
11~12	3. 2	2.6	2.7	2.0	1.3	1.8	3.0	2.4	3.2	1.3
<u>12~13</u>	2.6	2.9	2.6	2.0	2.2	1.8	3.4	2.5	3.4	1.8
13~14	2.0	2.8	2.6	2.0	2.6	1.8	3.4	2.5	3.4	1.8
14~15	3.3	3.3	2.4	1.7	1.9	0.7	2.3	2.2	3.3	0.7
15~16	3.3	3.5	2.4	2.0	2.6	0.7	2.2	2.4	3.5	0.7
<u>16~17</u>	3. 7	3.4	1. 7	1.6	2.9	0.6	2.4	2.3	3. 7	0.6
17~18	3.3	3.1	2.0	1.5	3.0	0.8	2.3	2.3	3.3	0.8
18~19	2.6	2.2	2.6	1.1	3.3	0.8	2.7	2.2	3.3	0.8
_1 <u>9~20</u> _	2.8	2.9	∟ _ ¹ ³	0.8	2.1	1.2	2.4	<u>1.9</u>	2.9	0.8
20~21	2.4	2.6	1.8	0.9	<u>2. 7</u>	1.9	2.1	2.1	2.7	0.9
21~22	2.3	1.4	1.5	1.1	2.1	1.0	2.2	1.7	2.3	1.0
22~23	2.2	1.5	2.4	0.4	2.1	0.4	1.7	1.5	2.4	0.4
23~0	1.6	1.7	2. 1	1.0	1.9	0.2	1.6	1.4	2. 1	0.2
<u>平均值</u>	2.1	2.2	1.9	1.7	1.8	1.6	1.8	1.9	 	L
<u>最大值</u>	3. 7	3.5	2.7	2.2	3.3	2.8	3.4		3.7	<u> </u>
最小値	0.4	1.0	0.5	0.4	0.6	0.2	0.0			0.0

表2.1-7(3) 気象現地調査結果(風速、秋季)

平成25年11	月24日~11	月 30 日							単位:	m/sec
	11月24日	11月25日	11月26日	11月27日	11月28日	11月29日	Ⅰ11月30日	平均值	最大値	最小値
時 刻	(目)	(月)	(火)	(水)	(木)	(金)	(土)	回じい	双八區	双行恒
0~1	1.7	0.8	3. 9	3. 1	2.7	1.6	2. 2	2.3	3. 9	0.8
1~2	1.9	0.6	2.5	2.3	2.3	2.7	1.8	2.0	2.7	0.6
2~3	2.5	1.6	1.7	1.8	2.3	1.9	1.8	1.9	2.5	1.6
3~4	2.4	1.4	10	2.3	34	1.5	2.4	2.0	3.4	<u>1.0</u>
4~5	2.1	1.4	1.2	1.5	1.5	1.8	2.0	1.6	2. 1	1.2
5~6	0.7	0.9	l <u>1. 1</u>	1.1	1.1	0.5	1.2	0.9	1.2	0.5
6~7_	0.6	1.0	1.7	2.2	2.5	0.2	1.8	1.4	<u>2. 5</u>	0.2
7~8	<u>1.6</u>	1.1	1.7	0.6	1.8	0.9	<u>2.3</u>	1.4	<u>2. 3</u>	0.6
8~9	1.3	0.9	2.0	1.2	2.1	0.9	2.9	1.6	2. 9	0.9
9~10	1.2	1.4	2.2	1.4	2.4	1.5	2.6	1.8	2.6	1.2
10~11	1.6	0.8	2.0	1.8	_30	2.2	2.2	2.0	3.0	0.8
11~12	1.1	2.1	1.8	2.1	4.7	2.7	1.2	2.2	4.7	<u> 1. 1</u> _
12~13	1.2	2.0	1.5	4.5	5.6	3.2	1.8	2.8	<u>5. 6</u>	1.2
13~14	<u>1. 1</u>	1.1	<u>1.4</u>	3. 7	3.4	3.6	2.2	2.4	3. 7	1.1
14~15	1.7	1.9	0.7	3.6	1.8	4.7	2.4	2.4	4. 7	0.7
15~16	<u>1.5</u>	2.0	1.6	3.3	2.3	3.6	1.2	2.2	<u>3.6</u>	1.2
<u>16~17</u>	0.7	2.2	3.0	2. 7	2.1	2.1	1.2	2.0	3.0	0.7
17~18	0.4	4.7	2.9	4.3	4.6	3.4	1.0	3. 1	4. 7	0.4
18~19	0.8	3. 9	3.1	4.4	3.6	2.5	1.2	2.8	4.4	0.8
19~20	0.0	5. 5	4.4	<u>3. 5</u>	3.2	1.8	0 <u>.</u> 9	2.8	<u>5.5</u>	0.0
20~21	0.5	6.9	3.4	4. 9	3.3	0.2	0.8	2. 9	6.9	0.2
21~22	0.9	7.9	3.0	4. 1	3.9	1.1	0.4	3. 1	7. 9	0.4
22~23	0.8	7.8	2.7	4.2	2.8	1.0	0.5	2.8	7.8	0.5
23~0	1.0	4.1	2.8	4.6	2.3	2.0	0.5	2.5	4. 6	0.5
	1.2	2.7	2.2	2.9	2.9	2.0	1.6	2. 2		L
最大值_	2.5	7.9	4.4	4.9	5.6	4.7	2.9		7.9	I
最小値	0.0	0.6	0.7	0.6	1.1	0.2	0.4			0.0

表2.1-7(4) 気象現地調査結果(風速、冬季)

平成26年1月	月23日~1月	29日							単位:	m/sec
	1月23日	1月24日	1月25日	1月26日	1月27日	1月28日	1月29日	平均値	最大値	最小値
時 刻	(木)	(金)	(土)	(日)	(月)	(火)	(水)	十%區	取八直	双/11恒
0~1	2.2	1.1	0.7	3.3	4.4	0.8	3.4	2.3	4.4	0.7
<u>1~2</u>	1.6	1.3	1.0	1.5	3.2	1.7	3.5	2.0	3.5	1.0
<u>2~3</u>	2.0	1.2	1.7	2.0	2.6	1.4	3.0	2.0	3.0	1.2
3~4	3.8	1.3	0.9	1.9	2.3	1.4	4.3	2.3	4.3	0.9
4~5	2.6	1.8	0.2	4.7	2.7	1.8	3. 7	2.5	4.7	0.2
_5 <u>~6</u> _	<u>1.9</u>	1.2	0.9	2.4	4.2	1.5	<u>3.9</u>	2.3	<u>4. 2</u>	0.9
_6~7	<u>2.4</u>	2.1	0.4	1.9	<u>4. 2</u>	0.7	<u>3. 3</u>	2.1	<u>4. 2</u>	0.4
<u>7∼8</u>	1.2	2.0	1.0	2.9	2.9	0.6	4.3	2. 1	4.3	0.6
8~9	1.8	2.0	1.1	1.2	3.6	0.3	3.9	2.0	3. 9	0.3
9~10	2.8	1.5	0.8	2.0	4.0	1.6	3.8	2.4	4.0	0.8
1 <u>0~1</u> 1	2.7	0.8	1.2	2.3	2.2	4.0	2.2	2.2	4.0	0.8
11~12	1.1	1.1	0.9	3.4	2.1	4.0	1.4	2.0	4.0	0.9
12~13	1.5	2.0	1.6	3.8	1.3	4.0	1.4	2.2	4.0	1.3
$13 \sim 14$	2.4	2.4	0.6	4.2	2.9	3.9	1.9	2.6	4.2	0.6
14~15	<u>0.9</u>	2.9	0.3	5.4	<u>2.4</u>	4.0	<u>2.0</u>	2.6	<u>5.4</u>	0.3
<u>15∼16</u>	1.9	2.1	0.3	6.7	1.8	2.6	2.2	2.5	6. 7	0.3
$16 \sim 17$	0.8	2.4	0.6	5.2	1.6	1.7	3.0	2.2	5. 2	0.6
$17 \sim 18$	0.6	2.0	0.6	5.1	1.8	1.7	2.5	2.0	5. 1	0.6
18~19	1.6	1.9	0.7	5.2	1.2	2.2	0.8	1.9	5.2	0.7
19~20	20	1.7	07	<u>5.3</u>	2.1	<u>2. 7</u>	1.2	2.2	_ <u>_53</u>	0.7
20~21	1.9	1.4	1.2	5.8	1.7	1.9	1.3	2.2	5.8	1.2
21~22	1.3	0.7	0.7	7.2	1.8	1.2	1.0	2.0	7.2	0.7
22~23	0.8	1.1	2.0	4.4	0.6	1.8	0.3	1.6	4.4	0.3
23~0	0.8	1.7	3.6	5. 1	0.6	3.1	0.4	2. 2	5.1	0.4
<u> 平均値</u>	1.8	1.7	1.0	3.9	2.4	2. 1	2.4	2. 2	 -	
<u>最大值</u>	3.8	2.9	3.6	7.2	4.4	4.0	4.3		7.2	I
最小値	0.6	0.7	0.2	1.2	0.6	0.3	0.3	l	! !	0.2

主風向: S 32.1%

SSW

_____ 春 季

S

SSE

夏季

S

SSE

注) 風速 0.4m/s 以下を静穏(calm)とした。

図 2.1-2 現地調査結果(風配図)

SW

主風向: S 33.9%

SSW

表2. 1-8 (1) 現地調査地点の風速 (m/s) ×東京管区気象台の風速 (m/s) $(|V_{Ai}|\cdot |V_{Bi}|)$

月日				春季							夏季			
時間	5月23日	5月24日	5月25日	5月26日	5月27日	5月28日	5月29日	7月2日	7月3日	7月4日	7月5日	7月6日	7月7日	7月8日
1:00	3.9	2.7	6.1	4.0	8.8	1.9	3.0	1.5	2.9	5.4	5.3	2.4	7.1	0.2
2:00	5.2	2.5	6.8	2.2	0.9	0.6	4.9	1.4	2.0	0.7	5.3	1.4	10.1	1.0
3:00	5.6	2.5	4.8	1.8	0.1	0.5	1.5	1.4	1.4	0.9	4.8	1.3	8.1	0.0
4:00	5.3	2.4	5.0	1.6	1.6	3.2	2.9	1.3	3.1	1.5	4.2	1.1	10.6	0.3
5:00	3.0	2.0	6.9	1.8	2.8	0.8	0.6	1.1	1.2	4.4	4.9	_ 1.5	5.3	2.5
6:00	2.8	1.3	6.1	2.4	6.1	1.5	2.2	0.2	1.4	4.4	5.1	0.7	6.0	1.6
7:00	3.8	1.9	7.3	3.8	5.0	0.5	0.9	0.6	1.3	4.8	3.5	0.5	5.8	1.1
8:00	1.2	0.6	7.0	8.1	12.0	1.8	2.9	1.1	3.6	4.4	6.3	1.7	9.8	2.2
9:00	2.2	3.6	4.2	18.1	7.0	2.6	2.3	2.0	5.0	5.8	4.4	1.1	8.7	4.1
10:00	3.8	7.1	6.8	35.7	8.9	3.8	6.6	1.6	6.7	5.9	6.6	2.1	5.8	5.0
11:00	7.3	7.3	4.2	34.3	8.1	8.0	10.8	8.3	10.5	5.9	2.9	3.9	4.3	5.5
12:00	7.4	18.4	9.9	61.0	7.0	15.0	11.4	10.6	11.2	7.0	2.8	3.6	1.6	9.6
13:00	7.5	14.8	12.4	47.3	6.7	14.6	10.9	12.7	11.3	6.8	2.0	4.6	3.1	11.9
14:00	5.7	18.7	10.2	39.2	2.5	13.5	14.7	9.2	15.4	6.0	3.4	10.4	2.3	12.2
15:00	8.4	25.6	10.0	35.1	1.1	15.6	11.2	14.5	13.2	8.4	4.9	7.6	1.2	8.1
16:00	11.9	27.9	12.1	23.3	1.9	15.0	4.6	17.8	11.9	⁹ .8	5.0	8.8	0.7	6.2
17:00	12.9	17.8	7.5	33.6	6.9	17.9	8.4	13.3	10.2	4.1	3.8	11.3	0.4	7.0
18:00	13.3	17.4	7.8	23.8	7.4	12.9	4.5	9.6	14.0	5 <u>.2</u>	4.2	11.1	1.8	9.4
19:00 20:00	8.6 8.3	18.5 13.5	4.9 3.5	26.8 39.5	3.2	6.5	7.0	10.4	8.6 10.2	8.1 2.9	1.8	10.2 7.8	3.2	10.8 8.4
	7.4			39.5	6.0	6.4 3.4	4.9	7.7	7.0		1.8	9.7		
21:00 22:00	8.4	13.0 15.0	4.6 4.1	26.0	7.5	4.8	4.2 3.4	6.0	1.7	4.0	1.9	6.7	4.4 0.9	7.6 7.5
23:00	6.2	9.5	6.1	16.2	2.3	5.7	2.1	7.5	3.5	5.5	0.7	8.4	0.5	6.3
0:00	5.7	6.8	4.4	15.7	2.8	5.5	1.5	4.2	3.9	5.7	1.9	5.9	0.3	7.8
6.00 合計	155.7	250.7	162.8	532.8	122.0	161.8	127.3	156.5	160.9	121.6	89.3	123.9	103.4	136.2

表2. 1-8 (2) 現地調査地点の風速 (m/s) ×東京管区気象台の風速 (m/s) ($|V_{Ai}|\cdot |V_{Bi}|$)

季節				秋季							冬季			
月日時間	11月24日	11月25日	11月26日	11月27日	11月28日	11月29日	11月30日	1月23日	1月24日	1月25日	1月26日	1月27日	1月28日	1月29日
1:00	4.0	0.7	19.7	8.7	10.2	7.3	6.7	8.6	1.5	1.5	10.9	17.6	2.5	13.9
2:00	4.7	0.8	6.6	6.4	10.3	8.1	5.2	4.5	2.5	1.3	3.3	21.4	3.6	14.7
3:00	6.2	3.4	2.2	4.4	6.1	2.6	3.6	6.2	3.4	1.4	3.2	9.9	3.2	12.0
4:00	5.1	2.9	1.6	3.6	8.1	1.5	6.6	16.7	3.3	0.8	7.4	7.1	3.5	18.9
5:00	3.3	1.8	1.0	2.9	3.3	1.6	3.8	10.9	4.9	0.3	33.4	17.6	3.6	12.2
6:00	0.6	1.5	2.3	2.5	3.0	0.1	2.9	2.5	2.4	0.6	11.0	23.5	2.0	12.5
7:00	1.2	1.9	3.8	5.6	8.4	0.2	6.4	5.0	2.9	0.2	6.8	13.4	1.1	12.9
8:00	3.1	1.6	4.1	0.5	8.2	1.1	7.9	2.5	3.0	0.6	9.9	10.7	0.4	26.7
9:00	2.2	0.9	7.7	1.1	9.5	1.0	8.3	3.4	3.0	1.1	2.8	13.0	0.2	13.7
10:00	1.7	1.2	6.7	4.1	11.3	3.4	7.2	8.1	2.4	1.1	4.0	18.0	3.4	12.5
11:00	1.5	0.4	6.6	4.6	18.7	5.7	7.5	12.7	0.9	1.1	5.5	6.8	14.8	6.4
12:00	2.2	3.5	2.6	5.6	33.4	4.6	2.0	3.6	2.5	0.5	14.6	7.8	18.4	1.7
13:00	2.7	4.3	2.6	23.9	35.6	13.3	5.2	1.7	5.0	1.4	23.2	2.0	22.8	2.0
14:00	1.7	3.2	5.0	19.6	20.5	<u> 15.4</u> _	10.5	4.1	6.5	0.7	24.8	3.5	16.4	7.0
15:00	3.8	9.4	1.6	20.3	5.7	28.7	7.5	2.2	7. <u>5</u>	0_1	42.1	7.2	18.4	6.0
16:00	3.3	9.5	4.0	17.1	7.3	19.6	2.8	3.4	6.5	0.2	57.0	6.1	6.2	7.5
17:00	1.2	5.6	3.6	9.3	6.0	12.5	2.0	1.6	6.7	1_1	34.3	4.6	3_6	11.1
18:00	0.7	32.7	10.8	29.1	15.9	15.2	2.5	2.0	4.6	0.7	37.7	3.8	7.1	8.5
19:00	<u> </u>	24.8	10.5	29.3	7.2	11.3	2.5	4.2	2.7	1.0	33.8	2.5	8.1	2.8
20:00	0.0	39.8	11.1	18.0	9.7	6.8	2.2	7.0	2.7	1.3	34.5	4.0	11.1	2.3
21:00	0.9	63.5	13.0	24.0	12.2	0.7	1.3	4.0	0.8	1.7	41.2	3.6	5.3	1.6
22:00	1.0	62.8	10.6	26.5	16.5	2.1	0.6	1.7	1.5	0.7	56.2	5.4	2.0	1.7
23:00	0.8	66.2	9.9	27.4	9.9	3.5	0.9	1.5	3.1	7.8	22.9	1.6	8.5	0.5
0:00	1.9	23.9	8.3	28.7	5.8	6.4	1.8	1.3	2.4	19.1	24.5	1.6	16.4	0.8
合計	55.2	366.5	156.1	323.1	282.7	172.7	107.9	119.4	82.7	46.3	544.9	212.7	182.7	209.8

表2.1-8(3) 現地調査地点の風向と東京管区気象台の風向のなす角 (ラジアン)

季節				春季							夏季			
月日 時間	5月23日	5月24日	5月25日	5月26日	5月27日	5月28日	5月29日	7月2日	7月3日	7月4日	7月5日	7月6日	7月7日	7月8日
1:00	1.000	0.707	0.707	0.924	0.707	0.383	1.000	1.000	1.000	1.000	1.000	0.707	1.000	1.000
2:00	0.707	0.707	0.707	1.000	0.383	0.924	0.924	0.924	1.000	0.924	1.000	0.383	1.000	0.707
3:00	0.924	0.707	0.707	0.924	1.000	1.000	0.924	0.707	0.707	0.924	0.924	0.707	0.924	1.000
4:00	0.707	0.924	0.707	1.000	0.924	0.924	0.924	0.707	0.707	0.383	0.924	0.924	0.924	1.000
5:00	0.924	0.383	0.924	0.707	0.924	1.000	0.707	0.707	1.000	0.924	1.000	0.924	1.000	0.924
6:00	0.707	0.000	0.924	1.000	0.924	0.707	0.707	1.000	1.000	1.000	0.924	0.924	0.924	0.924
7: <u>0</u> 0	0.924	0.383	1.000	0.924	0.924	0.924	0.707	0.707	0.924	0.924	0.707	0.000	0.924	0.924
8:00	0.924	0.924	0.924	1.000	1.000	1.000	0.924	0.383	0.924	1.000	0.924	0.707	1.000	0.924
9:00	0.707	1.000	0.924	1.000	1.000	0.924	0.924	0.707	0.924	0.924	1.000	0.707	1.000	0.924
10:00	1.000	0.707	0.707	0.924	1.000	0.924	0.383	0.383	0.924	1.000	1.000	0.924	0.924	0.707
11:00	0.707	0.707	0.924	1.000	0.924	0.707	0.924	0.924	0.924	1.000	0.924	1.000	0.924	0.924
12:00	1.000	0.924	0.707	1.000	0.924	0.707	0.707	1.000	0.924	1.000	0.707	0.924	0.924	0.924
13:00	1.000	0.924	0.924	1.000	0.383	0.924	0.707	0.924	1.000	1.000	0.383	0.707	0.707	1.000
14:00	1.000	0.924	1.000	0.924	1.000	0.707	0.383	1.000	0.924	1.000	1.000	0.707	0.707	0.924
15:00	1.000	1.000	0.707	0.924	0.707	0.383	0.924	0.924	1.000	0.924	1.000	1.000	0.383	0.924
16:00	0.924	0.924	0.924	1.000	0.707	0.707	0.707	0.924	0.924	0.924	1.000	0.924	0.924	0.924
17:00	0.924	0.924	0.924	1.000	1.000	0.924	0.707	0.924	0.707	0.924	0.924	0.924	0.924	0.924
18:00	0.924	0.924	0.924	1.000	1.000	0.707	0.924	0.924	1.000	0.924	1.000	1.000	0.707	1.000
19:00	1.000	0.924	0.924	0.924	1.000	0.924	1.000	0.924	0.924	0.924	0.924	0.924	0.924	0.707
20:00	0.924	0.924	0.924	0.924	0.924	0.924	0.924	1.000	0.924	1.000	0.924	1.000	0.924	0.924
21:00	0.924	0.924	0.924	0.924	0.924	0.924	0.924	0.924	1.000	1.000	1.000	1.000	0.707	1.000
22:00	0.924	0.924	0.924	0.924	0.924	0.383	0.924	0.924	0.924	1.000	1.000	1.000	0.707	1.000
23:00	0.707	0.707	0.924	1.000	0.383	0.924	0.924	0.924	1.000	0.924	1.000	1.000	1.000	0.924
0:00	0.707	0.707	0.924	0.924	0.924	1.000	0.383	0.707	0.707	0.924	0.924	1.000	1.000	0.707

表2.1-8(4) 現地調査地点の風向と東京管区気象台の風向のなす角 (ラジアン)

季節				秋季							冬季			
月日 時間	11月24日	11月25日	11月26日	11月27日	11月28日	11月29日	11月30日	1月23日	1月24日	1月25日	1月26日	1月27日	1月28日	1月29日
1:00	4.0	0.7	19.7	8.7	10.2	7.3	6.7	8.6	1.5	1.5	10.9	17.6	2.5	13.9
2:00	4.7	0.8	6.6	6.4	10.3	8.1	5.2	4.5	2.5	1.3	3.3	21.4	3.6	14.7
3:00	6.2	3.4	2.2	4.4	6.1	2.6	3.6	6.2	3.4	1.4	3.2	9.9	3.2	12.0
4:00	5.1	2.9	1.6	3.6	8.1	1.5	6.6	16.7	3.3	0.8	7.4	7.1	3.5	18.9
5:00	3.3	1.8	1.0	2.9	3.3	1.6	3.8	10.9	4.9	0.3	33.4	17.6	3.6	12.2
6:00	0.6	1.5	2.3	2.5	3.0	0.1	2.9	2.5	2.4	0.6	11.0	23.5	2.0	12.5
7:00	1.2	1.9	3.8	5.6	8.4	0.2	6.4	5.0	2.9	0.2	6.8	13.4	1.1	12.9
8:00	3.1	1.6	4.1	0.5	8.2	1.1	7.9	2.5	3.0	0.6	9.9	10.7	0.4	26.7
9:00	2.2	0.9	7.7	1.1	9.5	1.0	8.3	3.4	3.0	1.1	2.8	13.0	0.2	13.7
10:00	1.7	1.2	6.7	4.1	11.3	3.4	7.2	8.1	2.4	1.1	4.0	18.0	3.4	12.5
11:00	1.5	0.4	6.6	4.6	18.7	5.7	7.5	12.7	0.9	1.1	5.5	6.8	14.8	6.4
12:00	2.2	3.5	2.6	5.6	33.4	4.6	2.0	3.6	2.5	0.5	14.6	7.8	18.4	1.7
13:00	2.7	4.3	2.6	23.9	35.6	13.3	5.2	1.7	5.0	1.4	23.2	2.0	22.8	2.0
14:00	1.7	3.2	5.0	19.6	20.5	15.4	10.5	4.1	6.5	0.7	24.8	3.5	16.4	7.0
15:00	3.8	9.4	1.6	20.3	5.7	28.7	7.5	2.2	7.5	0.1	42.1	7.2	18.4	6.0
16:00	3.3	9.5	4.0	17.1	7.3	19.6	2.8	3.4	6.5	0.2	57.0	6.1	6.2	7.5
17:00	1.2	5.6	3.6	9.3	6.0	12.5	2.0	1.6	6.7	1.1	34.3	4.6	3.6	11.1
18:00	0.7	32.7	10.8	29.1	15.9	15.2	2.5	2.0	4.6	0.7	37.7	3.8	7.1	8.5
19:00	1.1	24.8	10.5	29.3	7.2	11.3	2.5	4.2	2.7	1.0	33.8	2.5	8.1	2.8
20:00	0.0	39.8	11.1	18.0	9.7	6.8	2.2	7.0	2.7	1.3	34.5	4.0	11.1	2.3
21:00	0.9	63.5	13.0	24.0	12.2	0.7	1.3	4.0	0.8	1.7	41.2	3.6	5.3	1.6
22:00	1.0	62.8	10.6	26.5	16.5	2.1	0.6	1.7	1.5	0.7	56.2	5.4	2.0	1.7
23:00	0.8	66.2	9.9	27.4	9.9	3.5	0.9	1.5	3.1	7.8	22.9	1.6	8.5	0.5
0:00	1.9	23.9	8.3	28.7	5.8	6.4	1.8	1.3	2.4	19.1	24.5	1.6	16.4	0.8
合計	55.2	366.5	156.1	323.1	282.7	172.7	107.9	119.4	82.7	46.3	544.9	212.7	182.7	209.8

表2.1-9 東京管区気象台の風向の異常年検定結果

			,		£#94	年風向出現	- 45年	,						検定年	評価値	F検定((D:採択	×:棄却)
風向/年					小し口!	十周刊田功	沙尺区					分散(S²)	S	秋疋十		5%	2.50%	1%
	2003年度	2004年度	2005年度	2006年度	2007年度	2008年度	2009年度	2010年度	2011年度	2012年度	平均値			2013年度	F ₀	5.12	7.21	10.56
NNE	725	599	608	640	579	646	704	608	682	552	634	3110.0	55.8	565	1.26	0	0	0
NE	661	573	609	512	541	607	793	556	616	501	597	7216.8	85.0	462	2.06	0	0	0
ENE	795	680	702	714	553	474	522	401	400	383	562	22727.4	150.8	335	1.86	0	0	0
E	497	411	456	560	444	268	247	227	198	195	350	18788.0	137.1	228	0.65	0	0	0
ESE	362	256	338	460	261	218	210	178	163	150	260	9888.9	99.4	169	0.68	0	0	0
SE	289	240	286	269	192	432	428	362	454	437	339	9060.8	95.2	437	0.87	0	0	0
SSE	199	175	227	219	258	895	809	873	838	919	541	119082.8	345.1	910	0.93	0	0	0
S	321	343	321	245	384	747	866	1056	979	944	621	105827.4	325.3	1061	1.50	0	0	0
SSW	385	521	459	535	588	447	577	636	542	550	524	5561.6	74.6	573	0.35	0	0	0
SW	1024	1226	957	822	1160	145	203	183	156	156	603	221630.8	470.8	133	0.82	0	0	0
WSW	257	252	251	190	174	97	117	109	109	117	167	4398.5	66.3	112	0.57	0	0	0
W	155	169	208	140	156	95	100	88	83	108	130	1732.0	41.6	93	0.65	0	0	0
WNW	161	185	192	204	242	268	272	296	282	344	245	3353.6	57.9	353	2.87	0	0	0
NW	375	310	407	438	834	970	831	906	906	1045	702	80453.7	283.6	841	0.20	0	0	0
NNW	1342	1484	1519	1540	1579	1840	1473	1672	1786	1781	1602	26318.5	162.2	1872	2.27	0	0	0
N	1218	1307	1186	1223	803	583	581	587	557	546	859	109862.5	331.5	592	0.53	0	0	0
Calm	18	29	30	49	32	24	27	22	33	17	28	84.5	9.2	24	0.16	0	0	0

2.1.2 予 測

- (1) 予測方法(車両の走行に伴う排出ガスの大気中における濃度)
- 1) 予測式

予測式は、「道路環境影響評価の技術手法(平成 24 年度版)」(平成 25 年 3 月 国土 交通省国土技術政策総合研究所、独立行政法人土木研究所)に準拠してプルーム式(有風 時:風速 1m/s を超える場合)及びパフ式(弱風時:風速 1m/s 以下の場合)を用いた。

なお、拡散幅は、「道路環境影響評価の技術手法」等に準拠して道路沿道での実測結果 から設定された式を用いた。

ア. プルーム式(有風時:風速1m/s を超える場合)

$$C(x, y, z) = \frac{Q}{2\pi U \sigma_{y} \sigma_{z}} \cdot \exp\left(-\frac{y^{2}}{2\sigma_{y}^{2}}\right) \quad \left[\exp\left\{-\frac{(z - H)^{2}}{2\sigma_{z}^{2}}\right\} + \exp\left\{-\frac{(z + H)^{2}}{2\sigma_{z}^{2}}\right\}\right]$$

ここで、

C(x, y, z) : (x, y, z) 地点における濃度(ppm又はmg/m³)

Q : 排出量(m1/s又はmg/s)

U : 風速(m/s)

H : 排出源の高さ(m)

σ_z, : 鉛直(z)方向の拡散幅(m)σ_v, : 水平(y)方向の拡散幅(m)

x : 風向に沿った風下距離(m)

y : x軸に直角な水平距離(m)

z : x軸に直角な鉛直距離(m)

「拡散幅]

(ア) 鉛直方向の拡散幅 σ a

 $\sigma_z = 1.5 + 0.31 \cdot L^{0.83}$ $\subset \subset \mathcal{C}$

L:車道部端からの距離(L=x-W/2)(m)

x : 風向に沿った風下距離(m)

W:車道部幅員(m)

なお、x < W/2の場合は $\sigma_z = 1.5$ とする。

(イ) 水平方向の拡散幅 σ v

 $\sigma_{v} = W/2 + 0.46$

なお、x < W/2の場合は $\sigma_v = W/2$ とする。

イ. パフ式(弱風時:風速1.0m/s以下の場合)

$$C(x, y, z) = \frac{Q}{(2\pi)^{3/2} \cdot \alpha^2 \cdot \gamma} \left\{ \frac{1 - \exp\left(-\frac{\ell}{t_0^2}\right)}{2\ell} + \frac{1 - \exp\left(-\frac{m}{t_0^2}\right)}{2m} \right\}$$

ここで、

$$\ell = \frac{1}{2} \left\{ \frac{x^2 + y^2}{\alpha^2} + \frac{(z - H)^2}{\gamma^2} \right\}$$

$$m = \frac{1}{2} \left\{ \frac{x^2 + y^2}{\alpha^2} + \frac{(z + H)^2}{\gamma^2} \right\}$$

t₀:初期拡散幅に相当する時間(s)

α、γ: 拡散幅に関する係数

「拡散幅]

(ア) 初期拡散幅に相当する時間t。

 $t_0 = W/(2 \cdot \alpha)$

ここで、

W:車道部幅員(m)

α :以下に示す拡散幅に関する係数(m/s)

(イ) 拡散幅に関する係数α、γ

 $\alpha = 0.3$

 $\gamma =$ 昼間 (7時~19時): 0.18

夜間(19時~7時):0.09

2) 予測条件

ア. 気象条件

予測に用いた気象条件は、東京管区気象台の地上高さ35.1mにおいて、平成25年4月~平成26年3月の1年間観測した風向・風速データを以下に示す式を用いて地上高さ(地上1m)における風速に推定した上で、有風時(風速1m/sを超える場合)及び弱風時(風速1m/s以下の場合)の出現割合、有風時における時間別風向別年間出現頻度、時間別風向別年間平均風速を整理した。予測に使用した気象条件は、表2.1-10に示すとおりである。

 $U = U_O \times (Z/Z_O)^{\alpha}$

ここで、

U : 高さ Z(m)の推定風速(m/s) Uo : 基準高さ Zo(m)の風速(m/s) α : べき指数(α=1/3:市街地)

出典:「道路環境影響評価の技術手法(平成24年度版)」(平成25年3月 国土交

通省国土技術政策総合研究所、独立行政法人土木研究所)

表2.1-10 予測に使用した気象条件(地上10mにおける値)

単位:出現頻度は%、平均風速はm/s

大気3	安定度/風向	静穏	NNE	ΝE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	N	合計
Α	<u>出現率 (%)</u>		0.197	0.174	0. 139	0.104	0.128	0.244	0.220	0.162	0.081	0.023	0.012	0.046	0.093	0.139	0.139	0.139	2.040
71	平均風速		1.34	1.38	1.06	1.46	1.19	1.39	1.50	1.39	1.20	1.28	1.51	0.85	1.12	1.30	1.24	1.40	
A-B	出現率 (%)	0.023	0.278	0.325	0.070	0.012	0.116	0.499	1.090	0.557	0. 128	0.139	0.046	0. 104	0.267	0.626	0.823	0.417	5, 520
л Б	平均風速	0.33	1.33	1.32	1.14	0.92	1.41	2.24	2.39	1.91	1.94	1.88	1.05	1.26	1.19	1.67	1.57	1.43	
В	出現率(%)	0.058	0.174	0.104	0.058	0.046	0.012	0.383	1.113	0, 533	0.232	0.070	0.058	0.104	0. 151	0.684	1.032	0.151	4.963
Б	平均風速	0.38	1.15	1.48	2.14	1.59	3.55	2.79	2. 78	2.68	2.48	1.73	1.58	1.64	1.72	2. 42	2.24	1.78	
В-С	出現率(%)		0.012					0.104	0.128	0.151	0.058	0.046			0.058	0.302	0.348	0.012	1.219
D-C	平均風速		3. 02					3. 31	3.49	3.47	3. 15	3.40			3.36	3.41	3.49	3. 22	
С	出現率(%)		0.023	0.012	0.023			0.093	0. 220	0.244	0.139	0.081		0.012	0.046	0.383	0.348	0.023	1.647
C	平均風速		2. 17	2.04	2.40			2. 98	2.78	3. 87	3.49	2.90		2.17	3.42	3.49	3. 19	2. 23	
C-D	出現率(%)							0.012	0.046	0.046	0.023	0.035			0.035	0. 197	0.128		0.522
С-Б	平均風速							4.07	4. 25	4.42	4.60	4. 49			4.33	4.78	4. 39		
D	出現率(%)	0.812	4. 987	4.314	3. 247	2.134	1.403	3. 212	6, 923	7, 515	3.607	1. 171	0.638	0.603	2.656	5. 648	13.162	4.836	66.868
D	平均風速	0.31	1.49	1.56	1.63	1.61	1.62	1.95	2. 16	2.50	2.35	1.44	1.10	1.08	1.50	1.88	1. 97	1.29	
Е	出現率(%)				0.012		0.012	0.035	0.035	0.244	0.209	0.035			0.116	0.499	0.429	0.012	1.638
E	平均風速				2. 23		2.43	2. 47	2.98	2.87	3. 20	2.93			3.09	3. 28	3.06	2.43	
E	出現率(%)		0.012	0.058	0.023		0.023	0.058	0.070	0.510	0.406	0.151	0.081	0.035	0.383	0.939	1. 136	0.081	3. 966
Г	平均風速		2. 23	2.29	2. 10		2.04	2.44	2.44	2.41	2.50	2.49	2.40	2.19	2.35	2.45	2.42	2. 28	
G	出現率 (%)	0.278	0.719	0.278	0.267	0.232	0.209	0.151	0.765	0.789	0.754	0.348	0.383	0.325	1.171	1.682	2.412	0.858	11.621
G	平均風速	0.28	1.09	1.30	1.15	1.41	1. 25	1.32	1.39	1.34	1.38	1.13	1.16	1.15	1.34	1.40	1.46	1.29	
																			100.000

東京区部において、東京2020大会会場が位置する地域の周辺には東京管区気象台、アメダス羽田観測所、アメダス江戸川臨海観測所があるが、予測には東京管区気象台の風向・風速データを用いた。なお、平成26年度における東京管区気象台とアメダス羽田観測所の相関性(ベクトル相関)は0.905、東京管区気象台とアメダス江戸川臨海観測所の相関性(ベクトル相関)は0.910である。

イ. 工事用車両の走行に伴う汚染物質排出量

車種別時間別交通量及び車種別排出係数から、次式より時間別に汚染物質排出量を求めた。

 $\mathrm{Q_1}\!=\!\mathrm{V_w}\!\times\!1/3600\!\times\!1/1000\!\times\!\Sigma\;(\mathrm{E_i}\!\times\!\mathrm{N_{it}})$

ここで、:

Q₁ :時間別平均排出量(ml/m·s又はmg/m·s)

 E_{i} : 車種別排出係数 $(g/km \cdot 台)$ N_{it} : 車種別時間別交通量(台/h) V_{w} : 換算係数 $(m1/g \chi lmg/g)$

窒素酸化物の場合:20℃、1気圧で523m1/g

浮遊粒子状物質の場合:1,000mg/g

ウ. 年平均濃度の算出

工事中の工事用車両の走行に伴う付加濃度は、有風時の風向別基準濃度及び弱風時の 昼夜別基準濃度、時間帯別平均排出量、時間帯別気象条件を用いて、予測点の時間帯別 平均濃度を求め、これを24時間平均して、年平均濃度として算出した。

$$C_{a} = \frac{\sum_{T=1}^{24} C_{at}}{24}$$

ここで、C。 : 年平均 NOx、SPM 濃度 (ppm 又は mg/m³)

C_{at} : 時刻 t における年平均 NO_x、SPM 濃度 (ppm 又は mg/m³)

R_{ws}:プルーム式により求められた風向別基準濃度(m⁻¹)

R_{dn}: パフ式により求められた昼夜別基準濃度(s/m²)

fwts: :年平均時間別風向出現割合

U_{+s} : 年平均時間別風向別平均風速(m/s)

f_{ct}: 年平均時間別弱風時出現割合

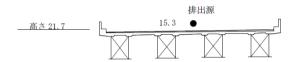
Q₊:年平均時間別平均排出量(ml/s·m 又は mg/s·m)

なお、sは風向(16方位)、tは時間、d,nは昼夜の別、wは有風時、cは弱風時を示す。

工. 将来交通量

工事の施行中の将来基礎交通量及び将来交通量は、表2.1-11に示すとおりである。 なお、工事の施行中の将来基礎交通量は、現況値と同様とした。

表2.1-11 工事の施行中における将来基礎交通量及び将来交通量(No.1)


単位:台

時間\車種	将来基礎交通量			工事用車両			将来交通量		
	大型車	小型車	合計	大型車	小型車	合計	大型車	小型車	合計
12:00~13:00	504	783	1, 287	0	0	0	504	783	1, 287
13:00~14:00	553	921	1, 474	84	0	84	637	921	1, 558
14:00~15:00	495	881	1,376	84	0	84	579	881	1, 460
15:00~16:00	436	959	1, 395	84	0	84	520	959	1, 479
16:00~17:00	403	874	1, 277	84	0	84	487	874	1, 361
17:00~18:00	406	1,045	1, 451	68	20	88	474	1, 065	1, 539
18:00~19:00	372	827	1, 199	0	0	0	372	827	1, 199
19:00~20:00	312	684	996	0	0	0	312	684	996
20:00~21:00	211	483	694	0	0	0	211	483	694
21:00~22:00	179	402	581	0	0	0	179	402	581
22:00~23:00	141	331	472	0	0	0	141	331	472
23:00~24:00	176	273	449	0	0	0	176	273	449
0:00~1:00	147	212	359	0	0	0	147	212	359
1:00~2:00	113	169	282	0	0	0	113	169	282
2:00~3:00	156	161	317	0	0	0	156	161	317
3:00~4:00	159	166	325	0	0	0	159	166	325
4:00~5:00	204	157	361	0	0	0	204	157	361
5:00~6:00	277	361	638	0	0	0	277	361	638
6:00~7:00	395	613	1,008	0	0	0	395	613	1,008
7:00~8:00	462	850	1, 312	70	20	90	532	870	1, 402
8:00~9:00	618	896	1,514	84	0	84	702	896	1, 598
9:00~10:00	664	842	1,506	84	0	84	748	842	1, 590
10:00~11:00	571	788	1, 359	84	0	84	655	788	1, 443
11:00~12:00	568	863	1, 431	84	0	84	652	863	1, 515
合計	8, 522	14, 541	23, 063	810	40	850	9, 332	14, 581	23, 913

才. 道路条件

予測地点の道路断面は、図2.1-3に示すとおりである。

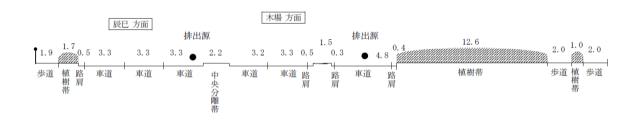


図2.1-3 予測地点の道路断面(No.1)

カ. 排出源及び予測高さ

排出源位置及び予測点位置の標準的な平面及び断面図は、図2.1-4に示すとおりである。排出源は連続した点煙源とし、予測断面の前後20mは2m間隔、その両側180mは10m間隔として、前後合わせて400mに設定した。また、煙源高さは、平坦部では車道部中央の高さ1mに、高架部では車道部中央の遮音壁上端部(仮想路面)の高さ1mに設定した。

予測点は、道路の中心線と直角方向の道路端とし、地上1.5mの高さとした。

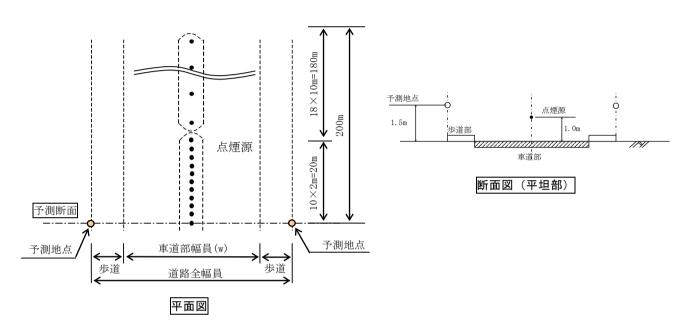


図2.1-4 排出源の標準的な平面及び断面図

キ. 排出係数

排出係数については、「平成23年度東京都環境局調査 都内自動車排出ガス量等調査 委託報告書」に基づき、以下の算定式によって設定した。

 $EF = a0 + a1 \cdot V + a2 \cdot V^2 + a3/V$

ここで、EF: 排出係数(g / km)

V : 車速(km / h)

表 2.1-12(1) 4 車種別排出係数(Nox)

No x 支線	a0	a1	a2	а3
乗用車	-1.5079E-03	7. 6006E-04	-5. 7731E-06	3. 2919E-01
バス	2. 0158E+00	2. 7435E-02	-4. 1239E-04	2. 0773E+01
小型貨物	1. 3147E-01	6. 7985E-04	-6. 8848E-06	1. 1740E+00
普通貨物	1. 2180E+00	1. 6533E-02	-2. 5117E-04	1. 2637E+01

表 2.1-12(2) 4 車種別排出係数(SPM)

SPM支線	a0	a1	a2	а3
乗用車	1.7000E-04	0.0000E+00	0.0000E+00	0.0000E+00
バス	1. 1289E-02	-2. 0953E-04	3. 7090E-06	2. 0182E-01
小型貨物	6. 4444E-04	-9. 5202E-06	1. 6415E-07	8.8052E-03
普通貨物	7. 0421E-03	-1. 2710E-04	2. 3424E-06	1.3087E-01

オ. 二酸化窒素(NO2)への変換

東京都が区部に設置した自動車排出ガス測定局及び一般大気測定局における平成22~26年度の5年間の測定結果を用いて、自動車排出ガス測定局と一般環境大気測定局の差を回帰分析し、窒素酸化物から二酸化窒素への変換式を求めた。対応させた自動車排出ガス測定局と一般環境大気測定局は表2.1-13に、相関図は図2.1-4に示すとおりである。

表2.1-13 自動車排出ガス測定局と一般環境大気測定局の対応表

自動車排出ガス測定局	一般環境大気測定局
日比谷交差点	千代田区神田司町
永代通り新川	千代田区神田司町
第一京浜高輪	港区白金、港区高輪
新目白通り下落合	国設東京新宿
春日通り大塚	文京区本駒込
明治通り大関横丁	荒川区南千住
水戸街道東向島	荒川区南千住
京葉道路亀戸	江東区大島
三ツ目通り辰巳	江東区大島
北品川交差点	品川区豊町
中原口交差点	品川区豊町
山手通り大坂橋	渋谷区宇田川町
環七通り柿の木坂	目黒区碑文谷
環七通り松原橋	品川区豊町
中原街道南千束	品川区豊町
環八通り千鳥	大田区東糀谷
玉川通り上馬	世田谷区世田谷
環八通り八幡山	世田谷区成城
甲州街道大原	渋谷区宇田川町
山手通り東中野	国設東京新宿
早稲田通り下井草	杉並区久我山
明治通り西巣鴨	板橋区氷川町、板橋区本町
北本通り王子	板橋区氷川町、板橋区本町
中山道大和町	板橋区氷川町、板橋区本町
日光街道梅島	足立区綾瀬
環七通り亀有	葛飾区鎌倉

 $[NO_2] = 0.2631 [NO_x]^{0.9556}$

ここで、[NO $_2$]: 二酸化窒素(NO $_2$)の付加濃度(ppm)

[NO_x]:窒素酸化物(NOx)の付加濃度(ppm)

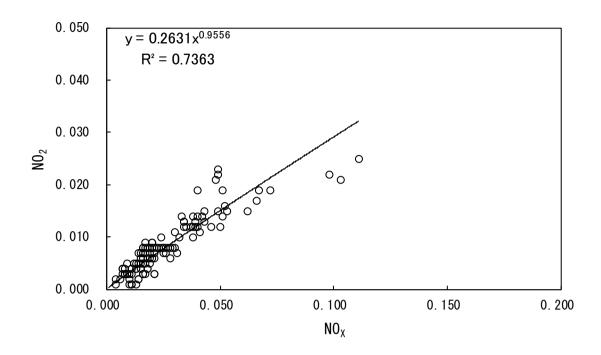


図2.1-4 二酸化窒素(NO₂)の変換式の相関図

(2) 予測方法(建設機械の稼働、熱源施設の稼働に伴う排出ガスの大気中における濃度)

1) 予測式

予測式は、風速条件により、風速 1.0m/s 以上の場合(有風時)にはプルーム式、風速 0.5 ~0.9m/s の場合(弱風時)には弱風パフ式、風速 0.4m/s 以下の場合(無風時)には無風パフ式を用いた。

ア. プルーム式(有風時:風速1.0m/s以上の場合)

$$C(x,y,z) = \frac{Q}{2 \pi U \sigma_{y} \sigma_{z}} \cdot \exp{-\frac{y^{2}}{2 \sigma_{y}^{2}}} \left[\exp{\left\{-\frac{(z-H)^{2}}{2 \sigma_{z}^{2}}\right\}} + \exp{\left\{-\frac{(z+H)^{2}}{2 \sigma_{z}^{2}}\right\}} \right]$$

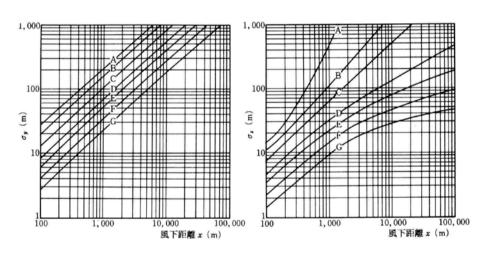
ここで、

C(x, y, z): (x, y. z) 地点における濃度(ppm 又は mg/m³)

Q:排出量(ml/s 又は mg/s)

U:風速(m/s)

H:排出源の高さ(m)


σyσz:水平(y)、鉛直(z)方向の拡散幅(m)

x:風向に沿った風下距離(m)

y:x軸に直角な水平距離(m)

z:x軸に直角な鉛直距離(m)

拡散パラメータについては、図 2.1-5 に示すパスキルーギフォード図を用いた。拡散パラメータの近似関係に表 2.1-14 に示すとおりである。

水平方向(σ v)

鉛直方向(σZ)

出典:「窒素酸化物総量規制マニュアル〔新版〕」(平成12年 (有)公害研究対策センター)

図2.1-5 パスキルーギフォードによる拡散パラメータと風下距離の関係

表 2. 1-14 パスキルーギフォードによる拡散パラメータの近似関係

 $\sigma_{y}(x) = \gamma_{y} \cdot x^{\alpha y}$

安定度	α_{y}	γ _y	風下距離 x(m)
A	0.901	0.426	0~1,000
	0.851	0.602	1,000~
В	0.914	0. 282	0~1,000
	0.865	0.396	1,000~
С	0.924	0. 1772	0~1,000
	0.885	0. 232	1,000~
D	0.929	0.1107	0~1,000
	0.889	0. 1467	1,000~
Е	0.921	0.0864	0~1,000
	0.897	0. 1019	1,000~
F	0.929	0.0554	0~1,000
	0.889	0.0733	1,000~
G	0.921	0.0380	0~1,000
	0.896	0.0452	1,000~

 $\sigma_{z}(x) = \gamma_{z} \cdot x^{\alpha z}$

安定度	α _z	γ₂	風下距離 x(m)
A	1. 122	0.0800	0~300
	1.514	0.00855	300~500
	2. 109	0.000212	500
В	0.964	0. 1272	0~500
	1.094	0.570	500~
С	0.918	0. 1068	0~
D	0.826	0. 1046	0~1,000
	0.632	0.400	1,000~10,000
	0.555	0.811	10,000~
Е	0.788	0.0928	0~1,000
	0.565	0. 433	1,000~10,000
	0.415	1. 732	10,000~
F	0.784	0.0621	0~1,000
	0.526	0.370	1,000~10,000
	0. 323	2. 41	10,000~
G	0.794	0.0373	0~1,000
	0.637	0. 1105	1,000~2,000
	0. 431	0. 529	2,000~10,000
	0. 222	3. 62	10,000~

イ. 弱風パフ式(弱風時:風速0.5m/s以上0.9m/s以下の場合)

C(x,y,z,T)

$$=\int_{t_{o}}^{T} \frac{Q}{(2\pi)^{3/2} \sigma_{y}(t)^{2} \sigma_{z}(t)} \cdot \exp \left\{-\frac{(x-ut)^{2}}{2\sigma_{x}(t)^{2}} - \frac{y^{2}}{2\sigma_{y}(t)^{2}}\right\} \left[\exp \left\{-\frac{(z-H)^{2}}{2\sigma_{z}(t)^{2}}\right\} + \exp \left\{-\frac{(z+H)^{2}}{2\sigma_{z}(t)^{2}}\right\}\right] dt$$

$$= \sum_{z \in \mathcal{T}} \frac{Q}{(2\pi)^{3/2} \sigma_{y}(t)^{2} \sigma_{z}(t)} \cdot \exp \left\{-\frac{(x-ut)^{2}}{2\sigma_{x}(t)^{2}} - \frac{y^{2}}{2\sigma_{y}(t)^{2}}\right\} \left[\exp \left\{-\frac{(z-H)^{2}}{2\sigma_{z}(t)^{2}}\right\} - \exp \left\{-\frac{(z+H)^{2}}{2\sigma_{z}(t)^{2}}\right\}\right] dt$$

C(x,y,z,T) : 排出後T時間の(x,y,z)地点における濃度 $(ppm又はmg/m^3)$

Q:単位時間当たりの排出量(ml/s又はmg/s)

σ_v(t) :排出後T時間の水平方向の拡散パラメータ

 $(\sigma_{x}(t) = \sigma_{v}(t) = \alpha \cdot t)$

 $\sigma_{\chi}(t)$: 排出後T時間の鉛直方向の拡散幅パラメータ ($\sigma_{\chi}(t) = \gamma \cdot t$)

H : 排出源の高さ(m)

t。: 初期拡散幅に相当する時間(s)

u :風速(m/s)

パラメータ α 、 γ については、表 2.1-15に示すとおりである。

表2.1-15 弱風時、無風時に係るパラメータ $(\alpha \times \gamma)$

大気安定度	無風時(≦	≦0.4m/s)	弱風時(0.	$5\sim 0.9 \text{m/s}$
(n° スキルの 分類)	α	γ	α	γ
A	0.948	1.569	0. 748	1. 569
A-B	0.859	0.862	0. 659	0.862
В	0. 781	0. 474	0. 581	0. 474
B-C	0.702	0.314	0. 502	0.314
С	0.635	0. 208	0. 435	0. 208
C-D	0. 542	0. 153	0.342	0. 153
D	0.470	0. 113	0. 270	0. 113
Е	0. 439	0.067	0. 239	0.067
F	0. 439	0.048	0. 239	0.048
G	0. 439	0.029	0. 239	0.029

出典:「窒素酸化物総量規制マニュアル〔新版〕」(平成12年 (有)公害研究対策センター)

ウ. 無風パフ式(風速0.4m/s以下の場合)

$$C(x, y, z, T) = \int_{t_o}^{T} \frac{Q}{(2\pi)^{3/2} \sigma_y(t)^2 \sigma_z(t)} \cdot \exp\left\{-\frac{x^2 + y^2}{2\sigma_y(t)^2}\right\} \left[\exp\left\{-\frac{(z - H)^2}{2\sigma_z(t)^2}\right\} + \exp\left\{-\frac{(z + H)^2}{2\sigma_z(t)^2}\right\}\right] dt$$

$$= \sum_{z \in T} C_x$$

C(x,y,z,T):排出後T時間の(x,y,z)地点における濃度 $(ppm又はmg/m^3)$

Q:単位時間当たりの排出量(ml/s又はmg/s)

 $\sigma_{y}(t)$: 排出後t時間の水平方向の拡散パラメータ($\sigma_{x}(t) = \sigma_{y}(t) = \sigma_{y}(t)$)

 $\sigma_z(t)$: 排出後t時間の鉛直方向の拡散パラメータ($\sigma_z(t) = \gamma \cdot t$)

H : 排出源の高さ(m)

t。: 初期拡散幅となるのに相当する控除時間(s)

パラメータ α 、 γ については、表 2.1-15に示したとおりである。

エ. 年平均寄与濃度の算出

年平均寄与濃度の算出は以下の式に示すとおりであり、気象区分ごとに拡散式で求めた濃度に、それぞれの気象条件の出現頻度を重ね合わせて計算した。

[寄与濃度の重合式]

$$\begin{split} C &= \sum_{k} \sum_{j} \sum_{i} C_{1} \left(D_{i}, V_{j}, a_{k} \right) \cdot f_{1} \left(D_{i}, V_{j}, a_{k} \right) \\ &+ \sum_{k} \sum_{j} \sum_{i} C_{2} \left(D_{i}, V_{j}, a_{k} \right) \cdot f_{2} \left(D_{i}, V_{j}, a_{k} \right) + \sum_{k} C_{3} \left(a_{k} \right) \cdot f_{3} \left(a_{k} \right) \end{split}$$

ここで、

C :重合濃度

 $C_1(D_i, V_i, a_k)$:有風時、風向 D_i 、風速 V_i 、安定度 a_k における 1 時間濃度

 f_1 (D_i , V_i , a_k):有風時、風向 D_i 、風速 V_i 、安定度 a_k の出現率

 C_2 (D_i , V_i , a_k):弱風時、風向 D_i 、風速 V_i 、安定度 a_k における 1 時間濃度

 $f_2(D_i, V_i, a_k)$:弱風時、風向 D_i 、風速 V_i 、安定度 a_k の出現率

 C_3 (a_k) :無風時、安定度 a_k における 1 時間濃度

F₃ (a_k) :無風時、安定度 a_k の出現率

2) 予測条件

ア. 気象条件

気象条件は、平成26年度の東京管区気象台における風向・風速と、東京管区気象台における日射量・雲量を用いた。大気安定度別風速出現頻度については、「窒素酸化物総量規制マニュアル〔新版〕」(平成12年12月 (有)公害研究対策センター)に基づき、高さ10mの風速をもとに整理した。その結果は、表2.1-17に示すとおりである。

排出源高さの風速を推定する際に用いるべき法則には、以下に示す式を用いた。ただし、べき指数 α は、表2.1-16に示す大気安定度別のべき指数とした。

 $U=U_0 \times (Z/Z_0)^{\alpha}$

ここで、

U : 高さ Z(m)の推定風速(m/s) Uo : 基準高さ Zo(m)の風速(m/s)

α :べき指数

表2.1-16 大気安定度別べき指数

大気安定度	A	В	С	D	Е	F, G
α	0.1	0.15	0.20	0.25	0.25	0.30

出典:「窒素酸化物総量規制マニュアル〔新版〕」(平成12年 (有)公害研究対策センター)

表2.1-17 予測に使用した気象条件(地上10mにおける値)

出現頻度(%)

man hada mide dem	ale de de		110															40.705	21
風速階級	安定度	0.00	NE 0, 00	0, 00	0,00	ESE 0, 00	SE 0, 00	SSE 0.00	0.00	0, 00	SW 0,00	WSW 0.00	0.00	0.00	NW 0.00	NNW 0, 00	N 0, 00	静穏 0,00	0,00
	A-B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.03
	В	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.06
	B-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.0~0.4	C-D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.0 0.1	D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.81	0.81
	E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	F G	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.27	0.00 0.27
	31-	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0,00	1. 17	1. 17
	A	0.05	0.01	0.07	0.01	0.03	0.05	0.03	0.03	0.01	0.01	0.00	0.05	0.03	0.03	0.06	0.01	0.00	0.49
	A-B	0.08	0.07	0.01	0.01	0.05	0.02	0.03	0.09	0.00	0.01	0.02	0.05	0.09	0.09	0.11	0.16	0.00	0.90
	B-C	0.10	0.02	0.00	0.00	0.00	0.00	0.02	0.03	0.02	0.03	0.02	0.02	0.01	0.06	0.10	0.01	0.00	0.47
	C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$0.5 \sim 0.9$		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	D E	1.06 0.00	0.78	0.51	0. 27	0.31	0.39	0.56	0.62	0.43	0.53	0.39	0, 32	0.79	0.87	1.68	1.36	0.00	10.88 0.00
	F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	G	0.35	0.06	0.10	0.03	0.06	0.06	0.11	0.22	0.17	0.17	0.16	0.13	0.24	0.29	0.30	0.30	0.00	2.74
	#	1.65	0. 94	0.70	0.33	0. 45 0. 09	0.51	0. 77 0. 17	0.99	0.64	0, 75	0.59	0.56 0.00	1. 17 0. 06	1.34	2. 25 0. 08	1.84 0.11	0.00	15. 48 1. 49
	A-B	0. 15 0. 16	0. 13	0.08	0.09	0.09	0. 19	0.17	0. 13 0. 16	0.06	0.01	0.01	0.00	0.13	0.10	0.08	0.11	0.00	2. 31
	В	0.05	0.07	0.02	0.03	0.00	0.05	0.15	0.05	0.03	0.01	0.01	0.02	0.08	0.13	0. 26	0.08	0.00	1.04
	B-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1.0~1.9	C-D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
1	D	3. 13	2.64	1.88	1.42	0.74	1.41	2.80	2.46	1.21	0.38	0.19	0.26	1.41	2.87	6, 23	3. 18	0.00	32. 22
1	E	0.00	0.00	0.00	0.00	0.00	0.00	0, 00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	F G	0.00	0.00	0.00	0.00	0.00 0.15	0.00	0.00	0.00 0.56	0.00	0.00 0.17	0.00	0.00 0.23	0.00	0.00 1.38	0. 00 2. 07	0.00	0.00	0.00 8.70
L	21	3. 88	3. 35	2. 21	1.74	1.03	1.88	3. 92	3, 35	1. 98	0.63	0. 48	0. 56	2. 62	4. 83	9. 18	4. 13	0.00	45. 76
	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	A-B B	0.03	0.02	0.00	0.00	0.02	0.35 0.15	0. 91 0. 40	0.30 0.23	0.06	0.07	0.00	0, 01	0.03	0.18	0. 16 0. 51	0.09	0,00	2. 25 1. 97
	B-C	0.02	0.02	0.00	0.00	0.02	0.10	0.40	0. 23	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	C	0.02	0.01	0.02	0.00	0.00	0.06	0.15	0.07	0.05	0.06	0.00	0.01	0.02	0.17	0.18	0.02	0.00	0.85
2.0~2.9	C-D	0.00	0.00	0.00	0.00	0.00	0.00 1.02	0. 00 2. 48	0.00 2.07	0.00	0.00	0.00	0.00	0, 00	0.00 1.04	0.00 3.44	0.00	0.00	0.00 15.12
	E	0.78	0.00	0.01	0.42	0.01	0, 02	0. 01	0.11	0. 94	0.13	0.00	0.01	0.03	0.08	0.14	0. 01	0.00	0, 50
	F	0.01	0.06	0.02	0.00	0.02	0.06	0.07	0.53	0.42	0.15	0.08	0.03	0.38	0.95	1.11	0.08	0.00	3. 97
	G 計	0.00	0.00	0.00	0.00	0.00 0.41	0. 00 1. 66	0. 00 4. 03	0.00 3.31	0.00 1.61	0.00	0.00	0, 00 0, 11	0.00 0.87	0, 00 2, 73	0. 00 5. 55	0.00 0.56	0.00	0.00 24.66
	A	0.00	0.00	0.00	0.43	0.41	0, 00	0,00	0, 00	0.00	0.00	0. 14	0.11	0.00	0,00	0, 00	0, 00	0.00	0.00
	A-B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	B-C	0.00	0.00	0.00	0.00	0.01	0.18	0.53	0. 23 0. 15	0.08	0.00	0.00	0.00	0.02	0.18	0. 15 0. 35	0.01	0.00	1. 40 1. 24
	C	0.00	0.00	0.00	0.00	0.00	0. 10	0.15	0.13	0.06	0.03	0.00	0.00	0.00	0.05	0.06	0.00	0.00	0. 29
3.0~3.9		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	D E	0.07	0.06	0.08	0.02	0.03	0.37	0, 77	1. 27 0. 14	0.63	0.07	0.01	0.00	0.08	0.47	1. 05 0. 30	0.01	0.00	4. 99 1. 17
	F	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	G	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	2H	0.08	0.06	0.08	0.02	0.05 0.00	0.69	1.49	1.82 0.00	0.99	0.15	0.01	0.00	0.25	1.44	1.91	0.03	0.00	9.09
	A-B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	В	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	B-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00
4.0~5.9	C-D	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.05	0.02	0.03	0.00	0.00	0.03	0. 22	0.13	0.00	0.00	0.54
	D	0.01	0.00	0.01	0.00	0.00	0.01	0.27	1.02	0.31	0.01	0.00	0.00	0.03	0.32	0.64	0.00	0.00	2.64
	F	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	G	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	#	0.01	0.00	0.01	0.00	0.00	0.03	0.34	1. 22	0.37	0.06	0.00	0.00	0.08	0.72	0.88	0.00	0.00	3, 73
	A-B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	В	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	В-С	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6.0~7.9	C-D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
0.0 1.5	D	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11
1	E	0.00	0, 00	0.00	0,00	0,00	0.00	0, 00	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0.00	0,00	0, 00	0.00
1	F G	0, 00	0, 00	0,00	0.00	0,00	0, 00	0, 00	0.00	0.00	0.00	0, 00	0,00	0,00	0, 00	0, 00	0,00	0.00	0, 00
	21	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.05	0.02	0.00	0.00	0.00	0.01	0.00	0.02	0.00	0.00	0.12
1	A	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	A-B B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00
1	B-C	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.0	C	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0, 00	0,00	0, 00	0.00	0,00	0.00	0.00
8.0∼	C-D	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	E	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	F	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1	G 計	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	A	0.19	0.16	0.15	0.10	0.13	0.24	0.21	0.16	0.07	0.02	0.01	0.05	0.09	0.14	0.14	0.13	0.00	1.99
1	A-B B	0.27	0.32	0.08	0.01	0.11	0, 50	1.11	0.55	0.13	0.14	0.05	0. 10	0. 25	0.62	0.81	0.41	0.03	5. 49
1	B-C	0.17	0.11	0.06	0.05	0.01	0.38	1. 10 0. 13	0.54 0.15	0.23	0.08	0.06	0.09	0.15	0.67	1. 03 0. 35	0.15	0, 06	4. 94 1. 24
1	C	0.02	0.01	0.02	0.00	0.00	0.09	0.22	0.27	0.14	0.08	0.00	0.01	0.05	0.40	0.35	0.02	0.00	1.68
合計	C-D	0.00	0.00	0.00	0.00	0.00	0.01	0.05	0.05	0.02	0.03	0.00	0.00	0.03	0.22	0.13	0.00	0.00	0.54
	D E	5. 05 0. 00	4. 33 0. 00	3. 28 0. 01	2. 14 0. 00	1. 44 0. 01	3. 19 0. 03	6. 91 0. 03	7. 47 0. 25	3.55 0.22	1. 18 0. 03	0.63	0.59	2.69 0.11	5. 57 0. 51	13. 07 0. 43	4. 86 0. 01	0.81	66. 76 1. 64
1	F	0.01	0.06	0.02	0.00	0.02	0.06	0.07	0.53	0.42	0.15	0.08	0.03	0.38	0.95	1.11	0.08	0.00	3. 97
1	G 計	0.74	0.32	0.26	0. 23 2. 53	0.21	0.16	0.75	0.78	0.78	0.34	0.40	0.35	1. 19	1.67	2. 37	0.89	0.27	11.71 100.00
	ř	6.46	5.31	3, 88	2.53	1.93	4.76	10.58	10.75	5, 63	2.10	1.23	1. 22	5.00	11.06	19.79	6.56	1.17	100.00

イ. 建設機械の稼働に伴う汚染物質排出量

建設機械の稼働に伴う汚染物質排出量は、下記に示す計算式で算出した。建設機械ごとの汚染物質排出量は、表2.1-18に示すとおりである。

年間汚染物質排出量=Q×1日の標準運転時間×年間稼働日数 1日の標準運転時間=1日の工事時間(時間)×1日の稼働率(%)

 $Q = (P \times NO_X(PM)) \times Br/b$

ここで、

Q: NOx(PM)排出係数原単位(g/h)

P: 定格出力(kW)

NOx(PM): NOx(PM) ISO-C1モードにおけるエンジン排出係数原単位(g/kW·h)

Br: 実作業ベースの平均燃料消費率(g/kW·h)

b: ISO-C1モードにおける平均燃料消費率(g/kW·h)

表2.1-18 建設機械の稼働に伴う汚染物質排出量

建設機械	機関出力 燃料消費率 (Br)		平均燃料消費率 エンジン排出 (1) 係数原単位		排出原單	鱼位	1日の稼 働時間	日稼働率	標準運転時間		
72.00			1	(b)	NOx	PM	NOx	PM	(8-17)		
	k W	L/kW·h	g/kW·h	g/kW·h	g∕kW•h	g∕kW•h	g/h・台	g/h・台	時間	(%)	(h/日)
一軸掘削機	235.0	0.436	318.3	229.0	5.3	0.15	1731.1	49.0	9.0	70%	6.3
液状化対策施工機	100.0	0.436	318.3	234.0	5.4	0. 22	734.5	29.9	9. 0	70%	6.3
コンプレッサー	125.0	0. 187	136.5	229.0	5.3	0.15	394.9	11.2	9.0	70%	6.3
タイヤショベル	63.0	0. 153	111.7	234.0	5.4	0. 22	162.4	6.6	9.0	70%	6.3
杭打機	170.0	0.436	318.3	229.0	5.3	0.15	1252.3	35. 4	9.0	70%	6.3
三軸掘削機	235.0	0.436	318.3	229.0	5.3	0.15	1731.1	49.0	9. 0	70%	6.3
アボロンGV330	174.0	0.085	62. 1	229.0	5.3	0.15	249.9	7. 1	9.0	70%	6.3
サイレントパイラー	195.0	0.145	105.9	229.0	5.3	0.15	477.7	13.5	9.0	70%	6.3
発電機	427.0	0. 145	105.9	229.0	5.3	0.15	1046.1	29.6	9.0	70%	6.3
バックホー (0.45m³)	60.0	0. 153	111.7	234.0	5.4	0.22	154.6	6.3	9.0	70%	6.3
バックホー (0.7m3)	104.0	0. 153	111.7	234.0	5.4	0. 22	268.1	10.9	9. 0	70%	6.3
クローラークレーン (100 t)	204.0	0.076	55.5	229.0	5.3	0.15	261.9	7.4	9. 0	70%	6.3
クレーン車 (20~60 t)	221.0	0.044	32.1	229.0	5.3	0.15	164.3	4.6	9. 0	70%	6.3
コンクリートポンプ。車	265.0	0.078	56.9	229.0	5.3	0.15	349.2	9.9	9.0	70%	6.3

注1) 定格出力、運転1時間当たり燃料消費量については、「平成28年度版 建設機械等損料表」(平成28年 (一社)日本建設機械化協会)を参考に設定した。

²⁾エンジン排出係数原単位、実作業ベースの平均燃料消費率、ISO-C1モードにおける平均燃料消費率については、「道路環境影響評価の技術手法(平成24年度版)」(平成25年3月 国土交通省国土技術政策総合研究所、独立行政法人土木研究所)を参考に設定した。

ウ. 熱源施設の稼働による汚染物質排出量

熱源施設から排出される汚染物質排出量は以下の式により算出した。 浮遊粒子状物質

: 排出量(m³(N)/h)=排出濃度(ppm)×乾き排出ガス量(m³(N)/h)×10⁻⁶

エ. 熱源施設の有効煙突高さ

汚染物質排出現の有効煙突高さは「窒素酸化物総量規制マニュアル〔新版〕」(平成 12 年 12 月 (有)公害研究対策センター)に基づき、以下の式を用いて算出した。

$$H_e = H_0 + \angle H$$

ここで、

H。: 有効煙突高さ(m)

H₀:煙突の実体高(m)

∠H:排出ガス上昇の高さ(m)

(ア)有風時(風速1.0m/s以上):コンケイウ式

$$\angle H = 0.175 \cdot Q_H^{1/2} \cdot u^{-3/4}$$

ここで、

Q_H : 排出熱量(cal/s)

u : 煙突高さにおける風速 (m/s)

Q」については以下の式から求める。

 $Q_H = \rho \cdot C_p \cdot Q \cdot \triangle T$

ρ : 0°Cにおける排ガス密度1.293×10³(g/m³)

Q : 単位時間当たりの排出ガス量(m3(N)/s)

Cp : 定圧比熱=0.24(cal/K・g)

∠T:排出ガス温度(T_c)と気温の温度差(T_c-15℃)

(イ)無風時(風速0.4m/s以上):ブリッグス式

$$\angle$$
H=1.4 • $Q_H^{1/4}$ • $(d \theta /dz)^{3/8}$

ここで、

Q_H : 排出熱量(cal/s)

d θ /dz : 濃度勾配 (℃/m)

d θ /dzは、昼0.003℃/m、夜0.010℃/mの値を用いた。

(ウ)弱風時(風速0.5m/s以上0.9m/s以下)

弱風時は、無風時のブリッグス式による∠Hとの値と、風速 2.0m/s の時のコンケイウ式による /Hの値から線形挿入により該当する風速の /Hを求めた。

2.1.2 予測結果

工事の施行中

工事用車両の走行による二酸化窒素及び浮遊粒子状物質について、将来基礎交通量及び将来交通量による寄与濃度の距離減衰図は、図2.1-6(1)及び図2.1-6(2)に示すとおりである。

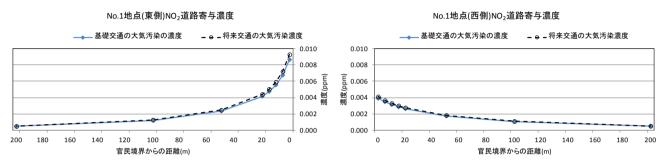


図2.1-6(1) 工事の施行中における二酸化窒素寄与濃度の距離減衰(No.1)

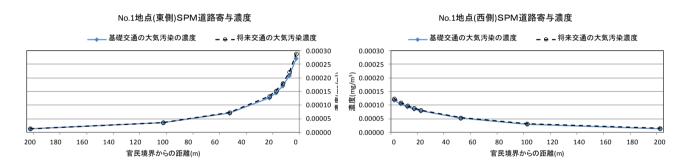


図2.1-6(2) 工事の施行中における浮遊粒子状物質寄与濃度の距離減衰(No.1)

2.1.3 評 価

(1) 年平均値から日平均値への換算式

二酸化窒素の年平均値から日平均値への換算式の算出は、平成 22 年度~平成 26 年度までの 23 区内に設置された一般大気環境測定局及び自動車排出ガス測定局の測定結果を用いて行った。

浮遊粒子状物質については、平成 25 年度における日平均値の 2%除外値が平成 22 年度~平成 24 年度及び平成 26 年度とは異なり高い値となっているため、年平均値と日平均値の 2%除外値は低い相関を示す。このため、浮遊粒子状物質の年平均値から日平均値への換算式の算出は、平成 22 年度~平成 24 年度及び平成 26 年度までの 23 区内に設置された一般大気環境測定局及び自動車排出ガス測定局の測定結果を用いて行った。

二酸化窒素及び浮遊粒子状物質の年平均値から、日平均値の年間 98%値又は年間 2%除外値への変換式の相関図は、図 2.1-7(1)及び図 2.1-7(2)、 図 2.1-8(1)及び図 2.1-8(2)に示すとおりである。

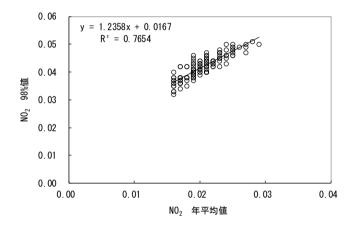


図2.1-7(1) 二酸化窒素の日平均値の年間98%値への変換式相関図(一般大気環境測定局)

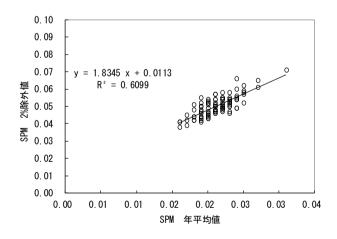


図2.1-7(2) 浮遊粒子状物質の日平均値の年間2%除外値への変換式相関図(一般大気環境測定局)

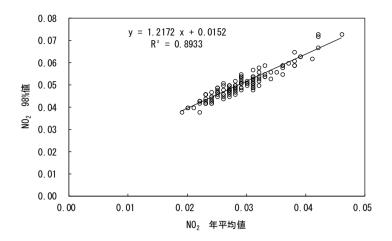


図2.1-8(1) 二酸化窒素の日平均値の年間98%値への変換式相関図(自動車排出ガス測定局)

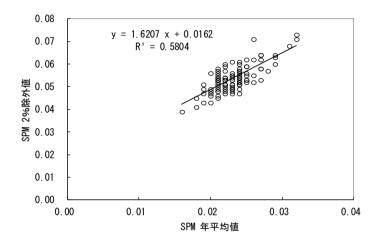


図2.1-8(2) 浮遊粒子状物質の日平均値の年間2%除外値への変換式相関図(自動車排出ガス測定局)

2.1.4 周辺事業(都営辰巳一丁目団地建替事業)を含めた複合影響予測(参考)

(1) 予測

1) 予測事項

予測事項は、周辺事業(都営辰巳一丁目団地建替事業(以下「辰巳団地」という。)) を含めた工事用車両の走行に伴い発生する二酸化窒素及び浮遊粒子状物質の変化の程度と した。

2) 予測の対象時点

本事業の工事用車両台数が最大となる工事着工後5か月目とした。

3) 予測地域

工事用車両の走行に伴う影響の予測地点は、本事業と同様とし、表 2.1-19 に示す1地点とした。

表 2.1-19 工事用車両の走行に伴う排出ガスによる影響の予測地点

予測 地点	道路名
No. 1	東京都市計画道路幹線街路 環状第三号線(三ツ目通り) [江東区辰巳 2-1]

4) 予測手法

ア. 予測条件

(ア) 大会開催前の将来交通量

予測地点の開催前の将来交通量は、表 2.1-20 に示すとおりである。予測に当たっては、工事用車両台数が最大となる工事着工後5か月目の台数が1年間続くものと設定し、一日あたりの工事用車両台数を算出した

表 2.1-20 大会開催前の将来交通量(工事着工後5か月目)

予測	道路名	種別	将来基礎	工事用車	両交通量	将来
地点	坦 斯石	1里 万门	交通量	本事業	辰巳団地	交通量
	東京都市計画道路幹線 街路環状第三号線	大型車	8, 522	810	20	9, 352
No. 1		小型車	14, 541	40	0	14, 581
	(三ツ目通り) 「江東区辰巳 2-1]	合 計	23, 063	850	20	23, 933

注 1) 将来交通量=将来基礎交通量+工事用車両交通量

5) 予測結果

工事用車両の走行に伴う大気質(二酸化窒素、浮遊粒子状物質)の予測結果は、表 2.1-21(1)及び(2)に示すとおりである。

ア. 二酸化窒素

工事の施行中の予測地点における二酸化窒素の将来濃度は、バックグラウンド濃度 0.022ppm を加えて $0.0261\sim0.0313ppm$ であり、このうち、工事用車両の走行に伴う寄与 濃度は $0.00020\sim0.00066ppm$ である。

また、将来濃度に対する工事用車両の走行に伴う増加分の割合(寄与率)は、0.8%~2.1%である。

イ. 浮遊粒子状物質

工事の施行中の予測地点における浮遊粒子状物質の将来濃度は、バックグラウンド濃度 $0.023 \, \text{mg/m}^3$ を加えて $0.0231 \sim 0.0233 \, \text{mg/m}^3$ であり、このうち、工事用車両の走行に伴う寄与濃度は $0.000005 \sim 0.000018 \, \text{mg/m}^3$ である。

また、将来濃度に対する工事用車両の走行に伴う増加分の割合(寄与率)は、0.1%未満である。

²⁾ 工事着工後5か月目の時点では、計画地周辺における大規模な道路整備等の計画がないことから、現況の交通流と大きな変化は生じないと考えられる。このため、将来基礎交通量は現況交通量を用いた。

表 2.1-21 工事用車両の走行に伴う二酸化窒素の予測結果

予測地点	道路名(通称名)	方位	バック グランド 濃度 (ppm)	工事の施行中 の将来基礎 交通量に伴う 寄与濃度 (ppm)	工事用車両の 走行に伴う 寄与濃度 (ppm)	工事の 施行中の 将来濃度 (年平均値) (ppm)	工事用車 両の走行 に伴う 寄与率 (%)
No. 1	東京都市計画道路幹線 街路環状第三号線	西側	0.022	0. 00391	0.00020	0.0261	0.8
NO. 1	(三ツ目通り) [江東区辰巳 2-1]	東側	0.022	0. 00864	0. 00066	0.0313	2.1

注1) 工事の施行中の将来濃度

- =バックグラウンド濃度+工事の施行中の将来基礎交通量に伴う寄与濃度+工事用車両の走行に伴う寄与濃 度
- 2) 工事用車両の走行に伴う寄与率=(工事用車両の走行に伴う寄与濃度÷工事の施行中の将来濃度)×100
- 3) 予測地点の方位は、予測結果を示した道路端の方向を示す。

表 2.1-21(2) 工事用車両の走行に伴う浮遊粒子状物質の予測結果

予測 地点	道路名(通称名)	方位	バック グランド 濃度 (mg/m³)	工事の施行中 の将来基礎 交通量に伴う 寄与濃度 (mg/m³)	工事用車両の 走行に伴う 寄与濃度 (mg/m³)	工事の 施行中の 将来濃度 (年平均値) (mg/m³)	工事用車 両の走行 に伴う 寄与率 (%)
No. 1	東京都市計画道路幹線 街路環状第三号線	西側	0.023	0.000118	0.000005	0. 0231	0.1未満
110. 1	(三ツ目通り) [江東区辰巳 2-1]	東側	0.023	0. 000271	0.000018	0.0233	0.1未満

注1) 工事の施行中の将来濃度

- =バックグラウンド濃度+工事の施行中の将来基礎交通量に伴う寄与濃度+工事用車両の走行に伴う寄与濃度
- 2) 工事用車両の走行に伴う寄与率=(工事用車両の走行に伴う寄与濃度÷工事の施行中の将来濃度)×100
- 3) 予測地点の方位は、予測結果を示した道路端の方向を示す。

(2) 評価

1) 評価の指標

評価の指標は、二酸化窒素については「二酸化窒素に係る環境基準について」に基づく環境基準(日平均値が 0.04ppm から 0.06ppm までのゾーン内又はそれ以下)、浮遊粒子状物質については「大気の汚染に係る環境基準について」に基づく環境基準(0.10mg/m³)を満足することとした。

2) 評価の結果

年平均値から日平均値(年間 98%値、2%除外値)への変換結果は、表 2.1-22(1)及び(2)に示すとおりである。

予測した二酸化窒素の将来濃度(年平均値)を日平均値(年間 98%値)に変換した値は 0.047~0.053ppm であり、評価の指標を満足する。工事用車両の走行に伴う寄与率は 0.8~2.1%であり、本事業のみの工事用車両の走行に伴う寄与率とほとんど変わらない。

また、予測した浮遊粒子状物質の将来濃度(年平均値)を日平均値(2%除外値)に変換した値は 0.054mg/m³であり、評価の指標を満足する。工事用車両の走行に伴う寄与率は 0.1%

未満であり、本事業のみの工事用車両の走行に伴う寄与率とほとんど変わらない。

表2.1-22(1) 工事用車両の走行に伴う二酸化窒素の影響の評価

予測 地点	道路名(通称名)	方位	将来濃度 (年平均値) (ppm)	日平均値の 年間 98%値 (ppm)	評価の指標
N - 1	東京都市計画道路幹線街 路環状第三号線 (三ツ目通り) [江東区辰巳 2-1]	西側	0. 0261	0. 047	日平均値が 0.04から 0.06ppm まで
No. 1		東側	0. 0313	0. 053	のゾーン内 又は それ以下

注1) 将来濃度にはバックグランド濃度を含む。

表 2.1-22(2) 工事用車両の走行に伴う浮遊粒子状物質の影響の評価

予測 地点	道路名(通称名)	方位	将来濃度 (年平均値) (mg/m³)	日平均値の 2%除外値 (mg/m³)	評価の指標
No. 1	東京都市計画道路幹線街 路環状第三号線	西側	0. 0231	0.054	日平均値が
NO. 1	(三ツ目通り) [江東区辰巳 2-1]	東側	0. 0233	0.054	0.10mg/m³ 以下

注 1) 将来濃度にはバックグランド濃度を含む。

²⁾ 予測地点の方位は、予測結果を示した道路端の方向を示す。

²⁾ 予測地点の方位は、予測結果を示した道路端の方向を示す。

2.2 騒音•振動

2.2.1 現況調査

(1) 騒音の状況

現地調査における環境騒音及び道路交通騒音の測定結果は、表 $1.2-1(1)\sim(4)$ に示すとおりである。

騒音の測定方法は、「騒音に係る環境基準について」(平成10年環境省告示第64号)に定める測定方法「JIS Z8731」に準拠し、騒音レベル(等価騒音レベル: L_{Aeq})を測定した。

(2) 振動の状況

現地調査における環境振動及び道路交通振動の測定結果は、表2.2-2(1) \sim (4)、地盤卓越振動数は、表2.2-3に示すとおりである。

振動の測定方法は、「JIS Z8735」に定める測定方法に準拠し、振動レベル(80%レンジの上端値: L_{10})を測定した。

各調査地点については、図2.2-1に示すとおりである。

表2.2-1(1) 騒音レベル測定結果(計画地周辺 環境騒音 平日)

測定日:2014年10月16日(木) ~ 2014年10月17日(金) 単位:dB

例足口 . 2014	午10月10日(小)	$\sim 2014年107$	月17日(金)					<u> </u>
時間	$ m L_{Aeq}$	L $_{5}$	L 10	L 50	L 90	$_{ m L_{95}}$	時間区分 平均 (L _{Aeq})	環境 基準値
10:00~11:00	56. 1	58.3	57.7	55.6	54.1	<u>53.7</u>		
$11:00\sim12:00$	55. 9	58. 5	57.5	55.3	53.4	53.0]	
$12:00\sim13:00$	54.0	<u>56. 4</u>	55.5	53.5	52.0	51.6]	
$13:00\sim14:00$	54.8	57.4	56.3	54.3	52.7	52.3		
$14:00\sim15:00$	56. 2	<u>58. 5</u>	57.8	55.8	54.0	<u>53.6</u>]	
15:00~16:00	57. 9	60. 7	59.2	57.0	55. 7	55.4	56	55
$16:00\sim17:00$	56.8	<u>59. 2</u>	58.2	<u>56.3</u>	55.1	54.8] 50	55
$17:00\sim18:00$	57. 1	59. 2	58.4	56. 7	55.6	55.4]	
$18:00\sim19:00$	56.0	58. 4	57.2	55.6	54.4	54.1]	
19:00~20:00	56. 1	58. 4	57.5	55. 7	54.5	54.2]	
20:00~21:00	55. 6	58. 4	57.3	55. 1	53. 5	53. 1		
21:00~22:00	55. 3	58. 3	56.7	54.6	53. 3	52.9		
22:00~23:00	54. 4	57.0	56.0	53.9	52.5	52.2		
23:00~24:00	52. 3	55.0	54. 1	51.8	49.6	49.0		
0:00~1:00	52.6	55. 9	54. 5	51.7	49. 3	48.6]	
1:00~2:00	50.8	53. 4	52.6	50.3	48. 1	47.6	53	45
2:00~3:00	51.6	53. 9	53.0	<u>50.8</u>	48.6	47.9	33	40
3:00~4:00	52. 0	53. 7	53.0	50.9	48. 4	47. 4		
4:00~5:00	52. 5	54.6	54. 1	52.0	49.6	48.9		
5:00~6:00	54. 2	56.3	55.8	<u>53. 9</u>	52.0	51.3		
6:00~7:00	55. 1	57.0	56.4	54.9	53. 5	53.0		
7:00~8:00	54.8	<u>57. 1</u>	<u>56. 2</u>	54.4	53.1	<u>52.8</u>	56	55
8:00~9:00	54. 2	56. 9	55.9	53. 7	52. 1	51.6] 50	ออ
9:00~10:00	54. 6	56. 7	56.0	54. 2	52.7	52.3		
昼間	56	58	57	55	54	53		•
夜間	53	55	54	52	50	49		

表2.2-1(2) 騒音レベル測定結果(計画地周辺 環境騒音 休日)

測定日:2014年10月11日(土) ~ 2014年10月12日(日) 単位: dB 時間区分 環境 時間 $L_{\,10}$ 平均 L_{Aeq} L_5 L_{50} L 90 L_{95} 基準値 (L Aeq) $\begin{array}{c} 10:00 \sim 11:00 \\ 11:00 \sim 12:00 \\ 12:00 \sim 13:00 \\ 13:00 \sim 14:00 \end{array}$ 54.4 57.6 56.1 53.6 52.0 <u>51.6</u> <u>52. 1</u> 55.9 60.2 58.3 52.5 54.4 54.5 57.8 56.4 53.5 51.9 51.5 55. 2 56. 9 52.6 52.2 58.4 5<u>4</u>. <u>3</u> 14:00~15:00 59. 2 57.3 60.7 56.0 54.1 53.7 15:00~16:00 59.1 57.4 60.4 56.3 54.6 <u>54.</u> 2 55 70 $\begin{array}{c} 16:00 \sim 17:00 \\ 17:00 \sim 18:00 \\ 18:00 \sim 19:00 \end{array}$ <u>57. 7</u> 6<u>0</u>. <u>8</u> 59.4 <u>56.4</u> <u>55.1</u> 5<u>4</u>. 7 53.6 58.9 5<u>5</u>. 0 55.8 57.6 53.3 55. 5 59. 2 57. 2 53.0 52.6 54.4 $\begin{array}{c}
19:00 \sim 20:00 \\
20:00 \sim 21:00 \\
21:00 \sim 22:00 \\
22:00 \sim 23:00
\end{array}$ 55.6 <u>58. 2</u> 57.2 <u>55. 1</u> 53.7 <u>53. 3</u> 54.3 <u>57. 2</u> <u>51. 5</u> 56.0 51.9 <u>5</u>3<u>.</u>7 52.9 56<u>.</u> 2 54.6 5<u>2</u>. <u>1</u> 50.5 50.0 <u>51.</u>2 52.4 56.1 54.1 49.6 49.2 $23:00\sim24:00$ 51.9 55.5 53.7 50.9 49.0 4<u>8</u>. <u>5</u> $\begin{array}{c}
0:00\sim1:00\\
1:00\sim2:00\\
2:00\sim3:00
\end{array}$ 51.2 55.0 53.2 49.8 <u>47.8</u> <u>47. 3</u> 52.4 56.9 54.8 <u>49. 9</u> 47.2 46.5 52 65 51. 2 54.8 52.8 48.946.2 45.6 $3:00\sim4:00$ 50.6 54.5 52.8 48.9 46.5 4<u>5</u>. 9 49.1 $4:00\sim5:00$ 50.3 53.8 52. 2 47.1 4<u>6</u>. <u>6</u> $\frac{5:00\sim6:00}{6:00\sim7:00}$ 51.6 48.8 48.3 54.5 53.3 5<u>0</u>. 7 53.1 56.2 55.0 52.5 50.9 5<u>0.</u> <u>4</u> 7:00~8:00 56.4 55.<u>0</u> 50.3 52.9 52.1 49.8 70 55 8:00~9:00 <u>57. 0</u> 55. 2 <u>51.8</u> 53.0 <u>50.</u> <u>1</u> 49. <u>6</u> 9:00~10:00 54. 0 56.4 58.1 52.6 50.9 50.4 昼間 55 57 54 58 52 52 夜間 52 55 53 50 48 47

表2.2-1(3) 騒音レベル測定結果(No.1 道路交通騒音 平日)

測定日:2014年10月16日(木) ~ 2014年10月17日(金) 単位·dR

例足口 . 2014	<u> 平10月10日(小)</u>	$\sim 2014 \pm 10$	月17日(金)					<u> 単位:dB</u>
時間	m L Aeq	L 5	L 10	L 50	L 90	L 95	時間区分 平均 (L _{Aeq})	環境 基準値
10:00~11:00	72.6	78. 1	76.7	69.8	62.3	<u>60.9</u>		
$11:00\sim12:00$	72.7	78.0	76.6	69.9	62.3	61.0]	
$12:00\sim13:00$	72.0	77. 5	76.1	68.9	60.6	59.3]	
13:00~14:00	72. 2	77.6	76.2	69. 4	61.6	60.0		
$14:00\sim15:00$	71.9	77.4	76.0	68.7	60.9	59.4]	
$15:00\sim16:00$	71.1	76. 5	75.0	68.5	61.3	<u>59.9</u>	71	70
$16:00\sim17:00$	71.4	77. 1	75.4	68. 1	60.7	<u>59.5</u>	1 1	70
$17:00\sim18:00$	71. 3	76. 5	74.9	68.6	61.4	59.7]	
$18:00\sim19:00$	70.6	76. 2	74.6	67.5	59.7	58.5]	
19:00~20:00	70.4	76. 5	74.9	66. 1	58.3	57.2]	
20:00~21:00	69. 1	75.3	73.1	63.7	57.4	56.1]	
21:00~22:00	68.7	75. 1	72.7	63. 2	57.6	56.5		
22:00~23:00	67.8	74.6	71.9	61.9	56.3	55.2		
23:00~24:00	67.7	74. 2	71.7	61.4	55.6	54.7]	
0:00~1:00	67.0	73.6	70.6	60.4	54.8	53.7]	
1:00~2:00	66.3	73.0	69.8	59.6	53.3	52.1	68	65
2:00~3:00	66.8	73.5	70.7	60.5	54.4	53.2		0.5
3:00~4:00	67.2	73. 7	70.9	60.9	53. 9	52.7]	
4:00~5:00	68. 5	75. 1	72.3	62.3	55.4	54. 1]	
5:00~6:00	70.3	76.5	74.6	64.9	<u>58.</u> 5	57.4		
6:00~7:00	71. 7	77.8	76.0	67.4	60.4	59. 1		
7:00~8:00	72.0	77.9	76.5	68.1	60.3	<u>59. 0</u>	71	70
8:00~9:00	71.9	77. 5	76.0	68. 7	60.4	59.0] '¹	10
9:00~10:00	71.4	76. 5	75. 2	69. 1	61.1	60.0		
昼間	71	77	75	68	60	59		
夜間	68	74	72	61	55	54		

表2.2-1(4) 騒音レベル測定結果(No.1 道路交通騒音 休日)

測定日: 2014年10月11日(土) ~ 2014年10月12日(日) 単位: dB

181 VL H . 2011	<u>中10月11日(上)</u>	2014年107	117 H (H)					₽世.ub
時間	$L_{ m A_{eq}}$	L 5	L 10	L 50	L 90	L 95	時間区分 平均 (L Aeq)	環境 基準値
10:00~11:00	70.5	<u>75. 7</u>	74.4	67.4	60.0	<u>58. 4</u>		
$11:00\sim12:00$	70.6	75. 8	74.5	68.1	61.0	59.6]	
12:00~13:00	70. 2	75.4	74.2	67.3	59.3	57.6]	
$13:00\sim14:00$	70. 2	75. 7	74.3	67.5	59.4	58. 1]	
$14:00\sim15:00$	70. 2	75. 7	74.1	67.3	59.8	58.6]	
15:00~16:00	70.0	75. 4	74.1	67.1	58.8	57.4	70	70
$16:00\sim17:00$	70.3	75.8	74.3	67.2	59.7	58.3	1 10	70
$17:00\sim18:00$	70. 1	76. 0	74.1	66.4	59.0	57.3]	
$18:00\sim19:00$	69. 5	75. 7	73.6	65.1	57.9	56.6]	
19:00~20:00	68. 7	75. 0	72.9	63.6	57.2	56.0]	
20:00~21:00	67.4	74.0	71.7	61.9	55.5	54.3]	
21:00~22:00	67. 3	74. 2	71.0	60.8	54.7	53.5		
22:00~23:00	67.0	73. 9	70.9	60.0	54.2	53.3		
23:00~24:00	66. 0	72. 7	69.8	59.3	53.7	52.6]	
0:00~1:00	65. 5	72.0	68.2	58.1	51.9	50.5]	
1:00~2:00	64. 9	71.7	68. 1	57.4	51.3	50.2	65	65
2:00~3:00	63. 4	70.1	66.3	55.9	49.8	48.5] 05	0.5
3:00~4:00	63. 3	70.0	66.8	56.0	49.8	48.5]	
4:00~5:00	63.4	69. 7	66. 2	55.8	49. 9	48.7]	
5:00~6:00	65.8	72.6	69.0	5 <u>9</u> . 1	53.4	51.9		
6:00~7:00	68. 1	75.0	71. 9	61.5	56. 9	55.7		
7:00~8:00	69.6	76.3	74.0	63.4	57.9	56.8	70	70
8:00~9:00	69. 4	76. 2	74. 0	63. 7	57.4	56.2] '0	10
9:00~10:00	68. 9	75. 8	73. 6	62.5	57.3	56.2		
昼間	70	75	74	65	58	57	<u> </u>	
夜間	65	72	68	58	52	51		

表2.2-2(1) 振動レベル測定結果(計画地内 環境振動 平日)

測定日:2014年10月16日(木) ~ 2014年10月17日(金) 単位:dB

_測定日:2014	年10月16日(木))~ 2014年10)	月17日(金)				単位: dB
時間	L 5	L 10	L 50	L 90	L 95	時間区分 最大 (L 10)	規制 基準値
10:00~11:00	36.8	36.0	33.3	30.6	29.9		
11:00~12:00	36.5	35.8	33.1	30.5	29. 7		
$12:00\sim13:00$	36.3	35.4	32.2	29.1	28.3		
13:00~14:00	36.0	<u>35.</u> 1	32.1	29.3	28.6		
$14:00\sim15:00$	36.0	35. 1	32.2	29.4	28.6	36	60
15:00~16:00	35.5	34.4	31.6	28.9	28. 2		
$16:00\sim17:00$	34.7	33.8	30.7	28.0	27.3		
17:00~18:00	34.0	33.2	30.2	27.6	26. 7		
$18:00\sim19:00$	32.6	31.8	29.1	26.6	25.8		
19:00~20:00	32.3	31.3	28.2	25.6	24.9		
20:00~21:00	31.8	30.8	27.5	24.7	23.9		
21:00~22:00	31.4	30.5	27.3	24.4	23.6		
22:00~23:00	31.4	30.4	27.1	23.9	23.0		
23:00~24:00	31.4	30. 2	26.6	23.3	22.5		
$0:00\sim1:00$	31.4	30.1	26.1	22.8	21.9		
1:00~2:00	31.1	30.0	26.1	22.6	21.8	34	55
2:00~3:00	32.6	31. 1	26.8	23.2	22.5		
3:00~4:00	32.9	31.7	27.9	24.0	23.0		
4:00~5:00	34.6	33.3	29.6	25.7	24.6		
5:00~6:00	35. 1	34. 1	30.7	27.6	26.8		
$6:00\sim7:00$	35.0	33.9	30.8	28.0	27.1		
7:00~8:00	34.1	33.2	30.2	27.4	26. 7		
8:00~9:00	35.3	<u>34. 2</u>	<u>30. 6</u>	<u>27.5</u>	26. 9	36	60
9:00~10:00	35.7	34. 9	32.1	29.5	28.8	30	00
昼間	35	35	32	29	28		
夜間	33	32	28	25	24		

表2.2-2(2) 振動レベル測定結果(計画地内 環境振動 休日)

測定日:2014年10月11日(土) ~ 2014年10月12日(日) 単位:dB 時間区分 規制 時間 最大 L_5 L_{10} L_{50} L_{90} L_{95} 基準値 (L₁₀) 29.1 10:00~11:00 36.6 35.5 32.2 28.3 11:00~12:00 <u>34. 9</u> 32.0 29.2 35.9 28.4 12:00~13:00 35.3 34.3 30.8 27.9 27.<u>2</u> 34.8 13:00~14:00 36. 0 <u>31. 0</u> 28.0 27<u>.</u> 1_ $14:00\sim15:00$ 31. 2 2<u>7. 7</u> 36 60 <u>35. 6</u> 3<u>4. 5</u> <u>28. 4</u> $15:00\sim16:00$ 30.7 27.0 <u>35.</u>0 <u>34. 1</u> 27<u>.</u>8 $16:00\sim17:00$ 34.0 <u>33. 0</u> <u>29. 9</u> <u>27.</u>1 26. <u>2</u> 17:00~18:00 32.5 31.4 28.0 24.9 24.1 18:00~19:00 31.7 30.4 26. 7 23.8 23.1 $\begin{array}{r}
19:00 \sim 20:00 \\
20:00 \sim 21:00
\end{array}$ 29.3 22.3 2<u>3</u>. <u>1</u> 30.3 <u> 26. 0</u> 30.3 29. 1 25.422.0 21.3 $\begin{array}{r}
21:00 \sim 22:00 \\
22:00 \sim 23:00
\end{array}$ 29.3 28<u>.</u>2___ 20.7___ <u>24. 4</u> 2<u>1.4</u> 24.8 <u>29.6</u> 2<u>8</u>. <u>5</u> <u>21.</u>6 20.9 23:00~24:00 29.1 27.8 24.0 20.3 19.4 0:00~1:00 22.9 <u> 26. 9</u> 28.1 <u>19. 7</u> 18.9 $\begin{array}{c} 1 : 00 \sim 2 : 00 \\ 2 : 00 \sim 3 : 00 \end{array}$ 22.7 18.7 29 55 26.6 27.8 19.5 27. 2 <u>25. 9</u> 21.8 18.5 17.7 $3:00\sim4:00$ 27.9 26. 5 22. 1 18.7 17.7 4:00~5:00 <u>27. 7</u> 26.5 <u>22. 5</u> 18.9 17.9 5:00~6:00 28.8 <u>27. 6</u> 23. <u>9</u> <u>20.5</u> 19.7 25. 5 25. 5 25. 7 6:00~7:00 30.0 28.9 2<u>2.6</u> 21.9 29<u>.</u>1 22.3 7:00~8:00 30.4 21.6 8:00~9:00 22.4 30.7 2<u>9</u>. <u>5</u> 21.7 60 36 9:00~10:00 29.8 22.0 28.6 25. 1 21.2 26 昼間 29 34 33 26 夜間 29 28 24 21 20

表2.2-2(3) 振動レベル測定結果(No.1:道路交通振動 平日)

測定日:2014年10月16日(木) ~ 2014年10月17日(金) 単位:dB

_測定日:2014	年10月16日(木))~ 2014年10月	月17日(金)				単位: dB
時間	L 5	L 10	L 50	L 90	L 95	時間区分 最大 (L 10)	規制 基準値
10:00~11:00	50.1	48.8	44.7	<u>39. 8</u>	38.6		
11:00~12:00	<u>51.0</u>	<u>49.4</u>	<u>43.9</u>	<u>38.3</u>	<u>36.</u> 7		
$12:00\sim13:00$	49.0	47. 9	43.9	<u>38.8</u>	37.7		
$13:00\sim14:00$	48.2	46.9	42.2	<u>37.6</u>	<u>36.</u> 5		
$14:00\sim15:00$	50.3	48.6	43.8	39.9	38.8	49	60
$15:00\sim16:00$		47. 4	42.0	36.4	35. 1		
$16:00\sim17:00$		<u>46. 5</u>	41.4	<u>36. 5</u>	35. 5		
$17:00\sim18:00$		46.7	42.2	<u>37.5</u>	36.3		
$18:00\sim19:00$	46.8	<u>45. 5</u>	40.1	<u>34. 7</u>	33.1		
19:00~20:00	46.8	44. 9	39.8	<u>33.9</u>	32.8		
20:00~21:00	44.4	43.4	38.8	32.2	30.0		
21:00~22:00	<u>44. 1</u>	<u>42.6</u>	<u>36.9</u>	<u>31.8</u>	30.6		
22:00~23:00	44. 7	43.6	38.3	31.7	29.6		
23:00~24:00	45.0	43.8	37.9	<u>32. 5</u>	30.6		
0:00~1:00	43.6	41.1	34.6	<u>28. 1</u>	27.0		
1:00~2:00	43.5	42.1	<u>36. 1</u>	<u>30. 4</u>	28.9	47	55
2:00~3:00	43.8	42.2	<u>36.4</u>	<u>31. 2</u>	29.6		
3:00~4:00	<u>46.</u> 0	44.4	<u>36.7</u>	<u>29</u> . <u>6</u>	27.8		
4:00~5:00	<u>45. 1</u>	<u>43.7</u>	<u>38.0</u>	<u>31.0</u>	28.7		
5:00~6:00	46.4	44.8	40.5	<u>35.3</u>	34. 2		
$6:00\sim7:00$	49.4	<u>47. 4</u>	42.2	36.8	35. 5		
7:00~8:00	48.2	<u>46.</u> 5	40.9	<u>36.8</u>	35. 4		
8:00~9: <u>0</u> 0	50.0	<u>47.3</u>	41.4	<u>36.4</u>	35. 2	49	60
9:00~10:00	48.3	46.8	41.1	36.2	35. 5	73	00
昼間	49	47	42	37	36		
夜間	45	44	38	32	31		

表2.2-2(4) 振動レベル測定結果(No.1:道路交通振動 休日)

測定日:2014年10月11日(土) ~ 2014年10月12日(日) 単位:dB 時間区分 規制 時間 最大 L_5 L_{10} L_{50} L_{90} L_{95} 基準値 (L₁₀) 10:00~11:00 49.2 47. 1 41.7 38.0 36.3 3<u>7. 7</u> 11:00~12:00 42.1 36.6 48.1 46.6 12:00~13:00 48.2 47.7 43.1 37.6 36.9 <u>45.</u>3 <u>39. 4</u> 33.4 13:00~14:00 46.3 3<u>4</u>. 2 $14:00\sim15:00$ 42. 2 48 60 <u>35. 3</u> <u>48. 5</u> <u>47. 0</u> 34.1 15:00~16:00 <u>47.0</u> 4<u>5</u>. <u>7</u> 40.1 <u>34.</u>0 32.8 $16:00\sim17:00$ <u>45. 3</u> 39.3 32.<u>9</u> <u>47.</u> 3 34<u>.</u>1 17:00~18:00 38.8 33.9 32.6 45.9 44.4 18:00~19:00 43.5 41.4 35. 2 31.0 30.3 $\begin{array}{r}
19:00 \sim 20:00 \\
20:00 \sim 21:00
\end{array}$ 30. 7 43.0 35. 7 29.6 <u>44.</u> 9 43.5 42. 2 34. 2 27.626.5 $\begin{array}{r}
21:00 \sim 22:00 \\
22:00 \sim 23:00
\end{array}$ 2<u>7. 9</u> 2<u>7. 7</u> 26<u>.</u> 4____ <u>43.</u> 1 <u>41.1</u>__ <u>34. 3</u> 44.2 4<u>2</u>. <u>0</u> 34. 1 <u>26.4</u> 23:00~24:00 42.9 41.1 34.3 28.2 27.1 0:00~1:00 3<u>8. 7</u> <u>25.6</u> <u>24. 1</u> 40.9 31.9 $\begin{array}{c} 1 : 00 \sim 2 : 00 \\ 2 : 00 \sim 3 : 00 \end{array}$ 43 55 31.4 24.2 39.6 2<u>5</u>. 6 41.7 38.8 37.7 30.5 23.6 22.3 $3:00\sim4:00$ 42.1 31.6 23.7 4<u>0</u>. <u>5</u> 25<u>.</u>1 4:00~5:00 <u>39. 4</u> 3<u>7</u>. 2 30.6 24. 1 22. 9 5:00~6:00 40.9 <u>39. 1</u> 32. <u>2</u> 2<u>6</u>. 7 25.8 6:00~7:00 46.8 43.4 35. <u>4</u> 2<u>8</u>. 7 27.4 <u>32. 5</u> 30.1 7:00~8:00 44.0 42.0 37.<u>5</u> 8:00~9:00 <u>44.</u> <u>5</u> 42.9 35<u>.</u> 8 <u>31.</u>0 <u> 29. 6</u> 60 48 9:00~10:00 30.1 42.7 40.7 35. 1 28.7 昼間 39 46 45 34 33 27 夜間 42 40 33 26

表2.2-3 地盤卓越振動数測定結果(No.1)

測定	1:平成26	6年10月	11日	(土)																				
н.	周波数																						地盤卓越振	動数 (Hz)
	Hz)	AP	1.0	1.25	1.6	2.0	2.5	3.15	4.0	5.0	6.3	8. 0	10.0	12.5	16.0	20.0	25.0	31.5	40.0	50.0	63.0	80.0	最大値が最も 多い周波数	最大値を示す 周波数の平均 値
	1	48. 4	16.5	17. 3	13. 8	23. 3	33. 1	29. 6	31. 7	35.0	33. 7	30. 1	39. 0	45. 0	39. 1	41.6	36. 6	33. 9	30.0	30. 3	26. 7	22. 9		
	2	48. 4	0. 7	3. 3	6.5	16.8	27. 7	28. 8	28.6	25.4	29. 0	31. 3	42.7	47. 2	37. 6	38. 6	36. 0	30. 6	27. 1	24. 3	16. 5	15. 7		
	3	46. 7	2.4	3. 4	12. 3	23. 6	20.9	21. 4	16.6	16. 3	22. 9	31. 2	39. 3	44. 7	41. 1	34. 0	30. 3	26. 6	19. 4	16.0	18. 4	16. 4		
振動	4	56.8	4.4	4. 9	5. 3	21. 1	26.3	29.8	23. 3	24.5	27.9	40. 3	49. 5	54.5	45. 1	38.8	41.1	32. 1	30. 1	25.6	23. 2	20.0		
加速	5	50. 6	0.5	4. 4	9.8	23. 0	27.0	28. 2	29. 5	29.8	34. 3	31.8	43. 7	48. 5	38. 4	35. 2	31. 1	27. 3	30. 4	25.8	24.0	19.8		
度レベ	6	53. 1	4.5	4. 0	6. 0	15.4	20. 7	29.6	25.8	27. 7	27. 5	33. 3	41.0	51.4	45.6	37.8	37. 2	34. 9	27. 7	27.4	24.4	21. 2	12.5	12. 5
ル (dB)	7	50.5	2.9	7.0	8. 6	22. 3	26. 2	32. 1	33. 7	25. 7	24. 7	26.2	37. 6	48. 7	42.2	36. 5	32. 2	32. 2	27. 7	26. 9	22.6	19.0		
	8	55.3	6. 1	4. 1	13. 5	20.4	26. 2	34. 4	32. 1	25.4	25. 4	36. 3	50.3	52. 4	47.6	40.7	35. 1	33. 7	29. 2	23. 0	19. 3	18. 1		
	9	53.9	4. 4	8. 1	6. 1	19. 1	27.4	38. 1	33. 3	24.3	30. 4	42.9	49.3	51. 9	45. 3	40.4	36. 0	32. 3	30.8	24. 7	21.8	27. 7		
	10	51. 9	11. 1	14.5	15. 9	15. 0	26. 7	35. 5	41.6	34.8	26. 1	30. 3	41.1	48. 4	44. 9	39. 2	35. 7	30. 1	28. 4	25.0	22. 0	22.6		
最大	値の個数													10										

2.2.2 予 測

(1) 予測方法

1) 工事用車両の走行に伴う道路交通騒音

ア. 予測手順

予測は、図2.2-2に示す予測手順に基づき、騒音レベル (L_{Aeq}) の予測を行った。なお、現況交通による騒音レベル $(L_{Aeq,R1})$ 、将来基礎交通車両の走行による騒音レベル $(L_{Aeq,HC1})$ 、工事用車両の走行による騒音レベル $(L_{Aeq,HC2})$ については、「イ. 予測式」で示した予測式を用い算出した。

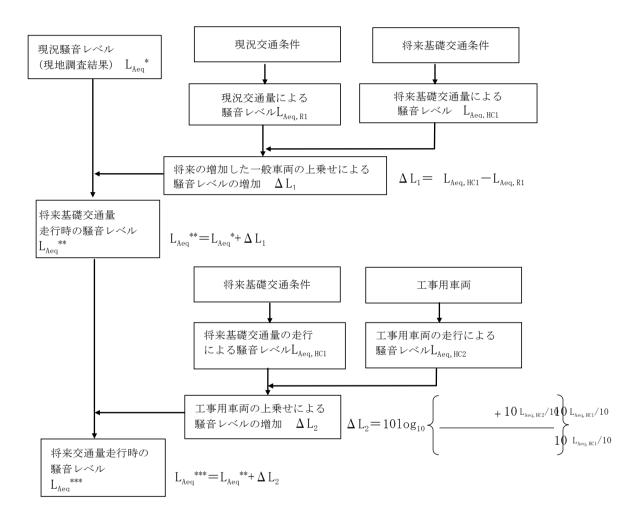


図2.2-2 工事用車両の走行に伴う道路交通騒音の予測手順

図2.2-1において使用している記号の意味は、以下に示すとおりである。

L_{Aea}* :現地調査で測定された現況の等価騒音レベル(dB)

 L_{Aeq}^{**} : 現況の等価騒音レベルに増減した一般車両の走行による騒音レベルの増加(Δ L_{1})を加えた将来基礎交通走行時の等価騒音レベル(dB)

 L_{Aeq}^{***} : 将来基礎交通量走行時の等価騒音レベルに工事用車両の走行による騒音レベルの増加 (ΔL_2) を加えた将来交通走行時の等価騒音レベル(dB)

 ΔL_1 : 現況の交通量による等価騒音レベル $L_{Aeq,R1}$ 及び、増加した一般車両の走行による等価騒音レベル $L_{Aeq,HC1}$ を用い、増減した一般車両の走行による騒音レベルの増減量

 ΔL_2 :将来基礎交通量による等価騒音レベル $L_{Aeq,RI}$ 及び、工事用車両の走行による等価騒音レベル $L_{Aeq,HC2}$ を用い、「イ.予測式」で示す予測式から求めた工事用車両の走行による騒音レベルの増加量

イ. 予測式

予測式は、「道路交通騒音の予測モデル(ASJ RTN-Model2013)」(平成26年4月(一社)日本音響学会)を用い、1台の車両の走行によるA特性音圧レベルの時間積分値を計算し、その値に1時間当たりの交通量を与えて、対象時間帯におけるエネルギー平均値である等価騒音レベルを求めた。予測地点No.1は、首都高速道路からの反射音、走行音、高架構造物音を別途計算し、合算した。

(ア) ユニットパターン計算の基本式

 L_{Aj} = L_{WA} -8- $20\log_{10}$ r+ ΔL_d + ΔL_g ここで、

L_{Ai} : 音源 j より伝搬する騒音レベル(dB)

Lwa: 自動車走行騒音の騒音パワーレベル(dB)

信号交差点等による加減速を考慮し、一般道路の非定常走行区間におけるパワーレベル式を用いた。

大型車類 : Lwa = 88.8 + 10log₁₀V

小型車類 : $L_{WA} = 82.3 + 10 \log_{10} V$ (V : 平均走行速度(km/h))

r:音源から観測点までの距離(m)

ΔL_d: 回折効果による補正値(dB)

ΔL_s: 地表面効果による補正値(dB)

地表面はコンクリート、アスファルト等の表面の固い地面とし、ΔL_g=0とした。

(イ) 反射音の計算方法

高架・平面併設部の高架裏面の反射音はスリット法による予測計算方法を用いた。 図2.2-3に示すように実音源をS、反射面によって生じる実音源の鏡像音源群をS'とする。予測点におけるA特性音圧レベルL。は次式で計算する。

$$L_A = L_{WA} - 8 - 20\log_{10} r + \Delta L_{dif,slit}$$

$$\Delta L_{dif,slit} = 10 \log_{10} \left| 10^{\frac{\Delta L_{dif1}}{10}} - 10^{\frac{\Delta L_{dif2}}{10}} \right|$$

ここで、

 $L_{\scriptscriptstyle A}$: 反射音のA特性音圧レベル (dB)

r : S'からPまでの直線距離 (m)

 $\Delta L_{xx,sx}$:音波がスリットを通過するときの回折補正量(dB)

 $\Delta L_{dif1} \Delta L_{dif2} : 0_1$ または 0_2 をエッジとする半無限障壁の回折補正量(dB)

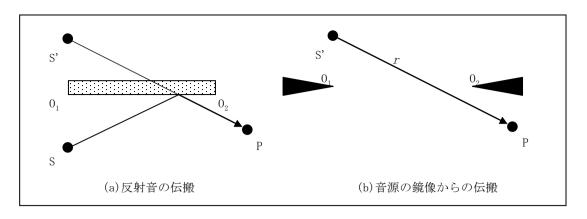


図2.2-3 スリット法による反射の扱い

(ウ) 首都高速道路からの走行音(定常走行区間における自動車走行騒音の A 特性音響パワーレベル基本式)

大型車類: $L_{WA} = 53.2 + 30 \cdot \log V + \Delta L_{surf}$

大型車類: $L_{WA} = 46.7 + 30 \cdot \log V + \Delta L_{surf}$

ここで、

 L_{wa} : A特性音響パワーレベル (dB)

V : 走行速度 (km/時)

C: 基準値に対する補正項(ただし、基準値とは敷設後数年以内の密粒舗装道路を走行した際のパワーレベルをいう)で次式により表わされる。

ここで

ΔL_{sur}:排水性舗装等による騒音低減に関する補正量 (dB)

 ΔL_{rad} : 道路の縦断勾配による走行騒音の変化に関する補正量 (dB)

ΔL_{dr}:自動車走行騒音の指向性に関する補正量 (dB)

(エ) 高架構造物音の予測計算方法

高架部の高架構造物音は以下の式を用い計算を行った。

$$L_{A,str} = L_{WA,str} - 8 - 20 \log_{10} r$$

$$= 2 \text{ C},$$

r:仮想点音源から予測点までの距離(m)

 $L_{WA,str}$: A特性音響パワーレベル (dB)

(オ) 高架構造物音の A 特性音響パワーレベル LwA, str

高架構造物音のA特性音響パワーレベルは、次式を用いて求めた。

$$L_{WA, str}(V) = a + 30 \log_{10} V$$

ここで、

V: 走行速度(km/h)

a: 高架橋の種類に応じて設定する定数

なお、本予測では首都高速深川線が高架構造であり、鋼床版鋼箱桁橋 (a =40.7) の値を適用した。

表2.2-4 橋種別の a の値

	橋種	а			
	鋼床版鋼箱桁橋	40.	40.7		
鋼橋	コンクリート床版鋼箱桁橋	35. 5	38. 9		
	コンクリート床版鋼箱桁橋	40.4	JO. 9		
コンクリート橋	I桁	31.8	34.8		
コングット情	I桁以外	35.9	34.0		

(ウ) L_{Aeq}の計算

等価騒音レベルの計算は、車線別及び車種別ごとのユニットパターンの時間積分値を計算し、それに1時間当たりの交通量N(台/3,600秒)を考慮し、観測時間で平均することによって求めた。

$$L_{\text{Aeqi}} = 10\log_{10} \left(\sum_{i=1}^{n} 10^{L_{\text{PAi/10}}} \Delta t_i \times \frac{N}{T} \right)$$

ここで、

L_{Aeoi}:車種別・車線別の等価騒音レベル(dB)

n :設定した音源の数

L_{PAi} : 設定したi番目の音源からの騒音レベル(dB)

 Δt_i : i番目の音源区間の通過時間(秒) $\Delta t_i = \frac{\Delta d_i}{V} \cdot \frac{3,600}{1,000}$

 Δd_i : i番目の音源の区間長(m)

V : 平均走行速度(km/h)

N :時間交通量(台/h)

T : 3,600s

さらに、算出した車線別及び車種別ごとの等価騒音レベルを以下の式により合成した。

$$L_{\text{Aeq}} = 10\log_{10} \left(10^{\frac{L_{\text{Aeq1}}}{10}} + 10^{\frac{L_{\text{Aeq2}}}{10}} + \dots + 10^{\frac{L_{\text{Aeqn}}}{10}} \right)$$

L_{Aea}: 受音点での合成等価騒音レベル(dB)

ウ. 予測条件

(7) 将来交通量

「2.1 大気等 2.1.2 予測 (1)予測方法(車両の走行に伴う排出ガスの大気中における濃度) 2)予測条件」(資料編p.29参照)に示したとおりである。

(イ) 音源位置等の設定

音源は、図2.2-4に示すように連続した点音源とし、上下線のそれぞれの中央に仮想的な 車線を各々1車線ずつ配置した。

車線上に配置した離散的な点音源の範囲は、車線に対する予測地点からの乗線と車線の 交点を中心として ± 200 (ℓ :計算車線から予測地点までの最短距離)の区間とし、点音源を 1m間隔($\Delta\ell$,)で道路面(高さG.L.+0m)に配置した。

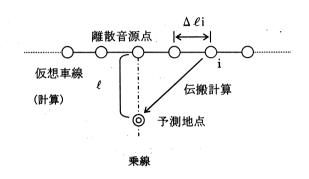


図2.2-4 点音源の設定

2) 工事用車両の走行に伴う道路交通振動

ア. 予測手順

予測手順は、図2.2-5に示すとおりとした。

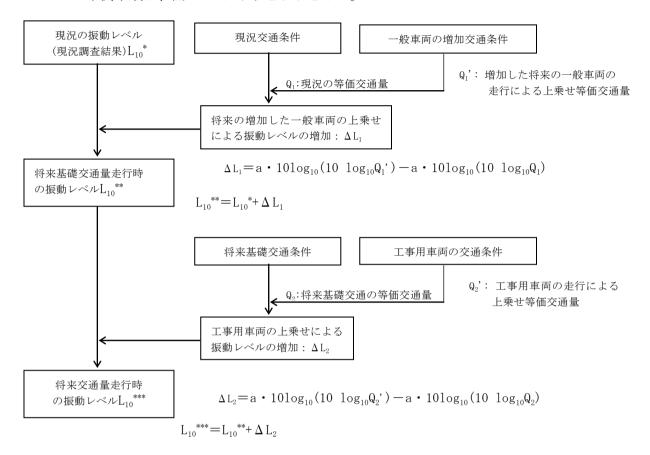


図2.2-5 工事用車両の走行に伴う道路交通振動の予測手順

図2.2-5において使用している記号の意味は、以下に示すとおりである。

L₁₀*: 現地調査で測定された現況の振動レベル(dB)

 L_{10}^{**} : 現況の振動レベルに増加した一般車両の走行による振動レベルの増加 (ΔL_{1})

を加えた将来基礎交通量走行時の振動レベル(dB)

L₁₀*** : 将来基礎交通量走行時の振動レベルに工事用車両の走行による振動レベルの

増加 (ΔL_2) を加えた将来交通量走行時の振動レベル (dB)

ΔL: 現況の等価交通量及び、増加した一般車両の等価交通量から予測式を用い計

算した振動レベルの増加量

ΔL。: 将来基礎交通の等価交通量及び、工事用車両の等価交通量から予測式を用い

計算した振動レベルの増加量

イ. 予測式

予測式は、以下に示す「道路環境影響評価の技術手法(平成24年度改定版)」(平成25年 3月 国土交通省国土技術政策総合研究所、独立行政法人土木研究所)による予測式を用いた。

 $L_{10} = L_{10}^* + \Delta L$

ここで、

 $\Delta L = a \cdot \log_{10} (\log_{10} Q') - a \cdot \log_{10} (\log_{10} Q)$

 L_{10} : 振動レベルの 80%レンジの上端値の予測値(dB) L_{10}^* : 現況振動レベルの 80%レンジの上端値(dB)

Q': 工事用車両等の上乗せ時の 500 秒間の 1 車線当たりの等価交通量(台/500s/車

線)

 $=500/3600 \times 1/M \times \{N_L + N_{LC} + K(N_H + N_{HC})\}$

N₁: 現況の小型車時間交通量(台/h)

N₁₀ : 工事用車両等のうち小型車時間交通量(台/h)

N_H: 現況の大型車時間交通量(台/h)

N_{HC}: 工事用車両等のうち大型車時間交通量(台/h)

Q :現況の 500 秒間の 1 車線当たり等価交通量(台/500s/車線)

 $=500/3600\times1/M\times(N_L+K\cdot N_H)$

ド : 大型車の小型車への換算係数(K=13)

M : 上下車線合計の車線数

a : 定数(a=47)

3) 建設機械の稼働に伴う建設作業騒音

ア. 予測式

予測式は、(一社)日本音響学会による「建設工事騒音の予測モデル(ASJ CN-Model 2007)」を用い、騒音規制法及び環境確保条例に該当するそれぞれの工種について、個々の騒音発生源(建設機械)からの騒音レベルを、予測地点で騒音レベル合成式で合成する方法とした。

$$L_i = L_w - 8 - 20 \log_{10} r - \Delta L_{dif}$$

ここで、

 L_i : 予測地点における音源iごとの騒音レベル(dB)

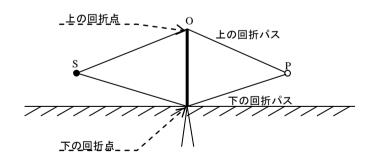
L_w:音源の音響パワーレベル(dB)
 r:音源iから予測地点までの距離(m)
 ΔL_{dif}:回折に伴う減衰に関する補正量(dB)

予測地点における騒音レベルは、以下に示す複数音源による騒音レベルの合成式により 算出した。

$$L = 10\log_{10}\left(\sum_{i=1}^{m} 10^{\frac{Li}{10}}\right)$$

ここで、

L:予測地点における合成騒音レベル(dB)


L_i: 予測地点における音源iごとの騒音レベル(dB)

m :音源の数

回折に伴う減衰に関する補正量は、次式で算出した。

$$\Delta L_{dif} = \Delta L_{d.1} - \Delta L_{d.0}$$

 $\Delta L_{d,1}$: 上の回折パス $\Delta L_{d,0}$: 下の回折パス

 $\Delta L_{d,1}$ と $\Delta L_{d,0}$ を合わせて ΔL_{dif} と表すと、これらは次式で求められる。 予測点から音源が見えない場合

$$\Delta L_{\text{dif}} = \begin{cases} -10\log_{10}\delta - 18.4 & \delta \ge 1 \\ -5 - 15.2 \sinh^{-1} \left(\left| \delta \right|^{0.42} \right) & 0 \le \delta \le 1 \end{cases}$$

予測点から音源が見える場合

$$\Delta L_{dif} = \begin{cases} -5 + 15.2 \sinh^{-1} \left(\left| \mathcal{S} \right|^{0.42} \right) & 0 < \mathcal{S} \leq 0.073 \\ 0 & 0.073 < \delta \end{cases}$$

5 :行路差

ΔL_{dif}:回折に伴う減衰に関する補正量(dB)

4) 建設機械の稼働に伴う建設作業振動

ア. 予測式

予測は、「建設作業振動対策マニュアル」(平成6年 (社)日本建設機械化協会)により、個々の振動発生源(建設機械)からの受振点における振動レベルを、距離減衰式を用いて求め、それらを予測地点で振動レベル合成式で合成し、予測地点における80%レンジの上端値(L₁₀)を求める方法とした。

[距離減衰式]

 L_{i} = L_{o} -8.7 λ (r- r_{o}) -20 Log_{10} (r/ r_{o}) n

[振動レベル合成式]

L =
$$10 \log_{10} \left(\sum_{i=1}^{m} 10^{Li/10} \right)$$

ここで、

L:予測地点の合成振動レベル(dB)

L;:振動源 i から r (m)離れた地点の振動レベル(dB)

 L_o :振動源から r_o (m)離れた地点の振動レベル(dB)

λ:地盤の内部減衰定数: λ=0.01

n: 振動波の種類によって決まる定数 表面波(レイリー波): n=0.5

m :振動源の数

2.2.3 周辺事業(都営辰巳一丁目団地建替事業)を含めた複合影響予測(参考)

(1) 予測

1) 予測事項

予測事項は、辰巳団地を含めた工事用車両の走行に伴う道路交通騒音及び振動の程度とした。

2) 予測の対象時点

本事業の工事用車両台数が最大となる工事着工後5か月目とした。

3) 予測地域

工事用車両の走行に伴う影響の予測地点は、本事業と同様とし、表 2.2-5 に示す1地点とした。

表 2.2-5 工事用車両の走行に伴う道路交通騒音・振動の予測地点

予測 地点	道路名
No. 1	東京都市計画道路幹線街路 環状第三号線(三ツ目通り) [江東区辰巳 2-1]

4) 予測手法

ア. 予測条件

(ア) 大会開催前の将来交通量

予測地点の開催前の将来交通量は、表 2.1-11 (資料編 p.29 参照) に示すとおりである。

5) 予測結果

ア. 工事用車両の走行に伴う道路交通騒音

工事用車両の走行に伴う道路交通の騒音の予測結果は、表 2.2-6 に示すとおりである。 予測地点における工事用車両の走行に伴う道路交通の騒音レベル(L_{Aeq})は、昼間 72dB である。また、工事用車両の走行に伴う騒音レベルの増加分は、1dB 未満である。

表 2.2-6 工事用車両の走行に伴う道路交通騒音の予測結果

単位:dB

_							712.	
	予測			時間	騒音レベル(L _{Aeq})			
	地点	道路名	類型	区分	将来基礎交通量	将来交通量の騒音	工事用車両	
	地点			凸分	の騒音レベル	レベル	による増加分	
	No. 1	東京都市計画道路幹線街路環状第三号線 (三ツ目通り) [江東区辰巳 2-1]	幹線	昼間	71 (71. 3)	72 (71. 6)	1 未満	

- 注 1) 将来交通量=将来基礎交通量+工事用車両交通量
 - 2) 時間区分 昼間 6:00~22:00

イ. 工事用車両の走行に伴う道路交通振動

工事用車両の走行に伴う道路交通の振動の予測結果は、表 2.2-7 に示すとおりである。

予測地点における工事用車両の走行に伴う道路交通の振動レベル (L_{10}) は、昼間 49dB、夜間 47dB である。また、工事用車両の走行に伴う振動レベルの増加分は、昼間、夜間ともに 1dB 未満である。

表 2.2-7 工事用車両の走行に伴う道路交通振動の予測結果

単位:dB

					振動レベル(L ₁₀)	
予測地点	道路名	区域	時間 区分	将来基礎交通量 の振動レベル	将来交通量 の振動レベル	工事用車両 による増加分
	東京都市計画道路幹線街路環状第三号線	佐	昼間	49 (49. 4)	49 (49. 4)	1未満
No. 1	(三ツ目通り) [江東区辰巳 2-1]	第一種	夜間	47 (46. 5)	47 (46. 5)	1 未満

- ¥注1)将来交通量=将来基礎交通量+工事用車両交通量
 - 2) 時間区分 第一種区域:昼間8:00~19:00、夜間19:00~8:00
 - 3) 結果は工事用車両が走行する時間帯における時間帯別振動レベル (L₁₀) の最大値である。

(2) 評価

1) 評価の指標

評価の指標は、工事用車両の走行に伴う道路交通騒音については環境基本法に基づく「騒音に係る環境基準」(昼間 70dB)、工事用車両の走行に伴う道路交通振動については環境確保条例に基づく「日常生活等に適用する振動の規制基準」(昼間 60dB、夜間 55dB)とした。

2) 評価の結果

ア. 工事用車両の走行に伴う道路交通騒音

工事用車両の走行に伴う道路交通の騒音レベル(L_{Aeq})は、表 2.2-8 に示すとおり、昼間 72dB であり、評価の指標を上回る。工事用車両の走行に伴う騒音レベルの増加分は、1dB 未満であり、本事業のみの工事用車両の走行に伴う増加分とほとんど変わらない。

表 2.2-8 工事用車両の走行に伴う道路交通騒音の影響の評価

単位:dB

				騒	騒音レベル(L _{Aeq})			
予測 地点	道路名	類型	時間 区分	将来基礎交通量の騒音 レベル	将来交通 量の騒音 レベル	工事用車 両による 増加分	評価の 指標 (L _{Aeq})	
No. 1	東京都市計画道路幹線 街路環状第三号線 (三ツ目通り) [江東区辰巳 2-1]	幹線	昼間	71 (71. 3)	72 (71. 6)	1未満	70	

注 1) 将来交通量=将来基礎交通量+工事用車両交通量

イ. 工事用車両の走行に伴う道路交通振動

工事用車両の走行に伴う道路交通の振動レベル (L_{10}) は、表 2.2–9 に示すとおり、昼間 49dB、夜間 47dB であり、評価の指標を下回る。工事用車両の走行に伴う振動レベルの増加 分は、昼間、夜間ともに 1dB 未満であり、本事業のみの工事用車両の走行に伴う増加分と ほとんど変わらない。

表 2.2-9 工事用車両の走行に伴う道路交通振動の評価の結果

単位:dB

				振	動レベル(L ₁₀)		並年の
予測 地点	道路名	区域	時間 区分	将来基礎 交通量の振動 レベル	将来交通量 の振動 レベル	工事用車 両による 増加分	評価の 指標 (L ₁₀)
	東京都市計画道路幹線街路環状第三号線		昼間	49 (49. 4)	49 (49. 4)	1 未満	60dB
No. 1	(三ツ目通り) [江東区辰巳 2-1]	第一種	夜間	47 (46. 5)	47 (46. 5)	1未満	55dB

注 1) 将来交通量=将来基礎交通量+工事用車両交通量

²⁾ 時間区分 昼間 6:00~22:00

²⁾ 時間区分 第一種区域:昼間8:00~19:00、夜間19:00~8:00

³⁾結果は工事用車両が走行する時間帯における時間帯別振動レベル(L₁₀)の最大値である。

2.3 歩行者空間の快適性

2.3.1 現況調査

(1) 歩行者が感じる快適性に係る気象等の状況

平成 27 年夏季 $(7 \sim 9 \, \text{月})$ における暑さ指数 (WBGT) は表 2.3 --1 に示すとおりである。 最も高い暑さ指数 (WBGT) は、平成 $27 \, \text{年8} \, \text{月6} \, \text{日の} \, 32.6 \, \text{℃}$ である。

表2.3-1(1) 平成27年夏季(7~9月)の気象等の状況

/ - :	気温	相対湿度	風速	全天日射量	WBGT
年月日	$^{\circ}\! \mathbb{C}$	%	m/s	kW/m²	$^{\circ}\!\mathbb{C}$
2015/7/1	22.2	99	1.0	0. 31	22.9
2015/7/2	24. 5	78	1.7	0.40	23.1
2015/7/3	23. 1	99	1.0	0.49	24. 2
2015/7/4	25. 4	81	1.9	0.85	25. 1
2015/7/5	21.5	89	1.2	0.91	22.2
2015/7/6	20.4	94	1.2	0.68	21.3
2015/7/7	24.0	77	1.7	0.85	23.3
2015/7/8	26. 2	77	1.5	1.06	25.7
2015/7/9	20.1	90	2.4	0.64	20.4
2015/7/10	28.3	62	4. 1	1. 99	26.8
2015/7/11	30.5	61	3. 2	3. 38	29.0
2015/7/12	31.0	61	3.9	3. 21	29.5
2015/7/13	33.6	51	7.2	3. 12	30.3
2015/7/14	34.0	49	8.3	3. 12	30.3
2015/7/15	32.6	55	6. 7	3. 28	30.0
2015/7/16	27.9	83	5. 2	0. 98	27.7
2015/7/17	30. 2	62	7. 1	2. 36	28.5
2015/7/18	29.6	63	5.3	1. 62	27.7
2015/7/19	34. 5	54	4.0	3. 30	31.7
2015/7/20	32.7	62	4.5	3. 19	31.1
2015/7/21	34.0	44	5. 2	3. 03	29.8
2015/7/22	32. 2	47	8.6	3. 33	28.4
2015/7/23	29.9	65	5. 1	1. 96	28.5
2015/7/24	33.0	58	3.3	3. 17	30.9
2015/7/25	32.6	60	3. 7	2. 14	30.6
2015/7/26	35. 1	49	3. 4	2.81	31.6
2015/7/27	34. 2	56	4.2	2. 75	31.7
2015/7/28	33. 2	50	3. 3	1.44	29.2
2015/7/29	31.8	59	2.6	0.92	28.5
2015/7/30	33. 4	48	3.6	2.51	29.9
2015/7/31	34. 3	47	3. 7	2.77	30.6

表2.3-1(2) 平成27年夏季 (7~9月) の気象等の状況

	卢油 扣型油床				WD CF	
年月日	気温	相対湿度	風速	全天日射量	WBGT	
	$^{\circ}\!\mathbb{C}$	%	m/s	kW/m²	$^{\circ}\!\mathbb{C}$	
2015/8/1	34. 7	55	4. 5	2. 31	31.8	
2015/8/2	34. 1	58	5. 2	2.81	31.8	
2015/8/3	33. 7	56	4.8	2.74	31.2	
2015/8/4	34. 1	58	4.0	3. 10	31.9	
2015/8/5	34.9	53	6.2	3. 08	31.8	
2015/8/6	35.2	56	4. 7	2.85	32.6	
2015/8/7	36.4	46	1.2	2. 36	32.3	
2015/8/8	31.0	57	3. 1	2. 08	28.7	
2015/8/9	31.8	56	4.3	1. 19	28.4	
2015/8/10	31.3	60	2.8	2.03	29.4	
2015/8/11	34.7	48	3.4	2. 67	31.0	
2015/8/12	33.4	58	3. 1	2. 75	31.3	
2015/8/13	29.6	65	3. 9	1.87	28.2	
2015/8/14	30.9	68	1. 7	1. 32	29.4	
2015/8/15	32. 1	60	2.8	3. 22	30.4	
2015/8/16	31.1	58	2.4	2. 78	29.3	
2015/8/17	27.4	87	5.6	0.00	26.0	
2015/8/18	31.3	68	4. 1	2.03	30.3	
2015/8/19	31.3	54	3.8	3. 01	28.9	
2015/8/20	26.6	83	2.0	0.00	24.9	
2015/8/21	28.8	73	1.9	0.80	27.3	
2015/8/22	32.0	62	5. 2	2.80	30.4	
2015/8/23	31.1	58	3. 4	2. 49	29.1	
2015/8/24	27.8	54	2.0	1. 53	25. 1	
2015/8/25	22.8	67	2.4	0.74	20.9	
2015/8/26	21.0	100	3. 4	0.51	22.0	
2015/8/27	26.8	65	2.5	2.48	26. 1	
2015/8/28	22.7	79	2.9	0.46	21.5	
2015/8/29	20.9	93	2.5	0. 26	20.8	
2015/8/30	22.5	96	1. 1	0. 29	22.9	
2015/8/31	23.8	83	1.9	0.04	22.3	

表2.3-1(3) 平成27年夏季 (7~9月) の気象等の状況

	H \		日十	^ 	IUD OF
年月日	気温	相対湿度	風速	全天日射量	WBGT
	$^{\circ}\mathbb{C}$	%	m/s	kW/m²	$^{\circ}$
2015/9/1	25.9	85	1. 7	1. 15	26. 5
2015/9/2	30.9	66	7.0	2. 73	29.8
2015/9/3	29.5	62	0.8	2.51	28.3
2015/9/4	29.9	64	1. 7	2.45	28.9
2015/9/5	29.2	59	1.8	2.61	27.7
2015/9/6	26.4	73	0.9	0.78	25. 1
2015/9/7	25.3	91	0.9	1. 09	26.5
2015/9/8	20.8	99	1.8	0. 11	21.1
2015/9/9	24.6	99	5.4	0. 33	25. 2
2015/9/10	23.5	100	2.6	0.00	23.7
2015/9/11	29. 1	56	1.4	3.00	27.3
2015/9/12	29. 1	59	5.8	2. 16	27. 1
2015/9/13	27.3	63	4.0	1. 61	25.6
2015/9/14	26.3	47	4.6	1. 79	23.0
2015/9/15	26.0	51	3.4	2.45	23.7
2015/9/16	25.0	55	4.6	1. 78	22.8
2015/9/17	18.7	98	2.4	0.47	19.5
2015/9/18	23.4	85	0.9	0. 59	23.2
2015/9/19	28.6	55	1.8	2.49	26.6
2015/9/20	27.9	43	1.8	2. 56	24.6
2015/9/21	26.7	46	1. 1	2.74	24.0
2015/9/22	27.7	38	2.6	2.01	23.5
2015/9/23	26.3	40	3. 7	2. 78	22.8
2015/9/24	22.8	72	2.8	0.49	21.0
2015/9/25	18.8	96	1.6	0.00	18.5
2015/9/26	23.9	77	0.8	0.83	23.2
2015/9/27	24. 2	76	1.5	0.97	23.6
2015/9/28	27.5	52	4. 3	2. 12	24. 9
2015/9/29	24.9	39	2.3	2. 57	21.5
2015/9/30	24. 5	22	1. 7	1. 97	19.0
2015/9/1	25.9	85	1.7	1. 15	26. 5

2.3.2 予 測

(1) 歩行者が感じる快適性の程度の予測手法

歩行者が感じる快適性の程度の予測手法は、「都市の熱環境対策評価ツール」の数値シミュレーションによる方法によった。

「都市の熱環境対策評価ツール」は、国土技術政策総合研究所の総合技術開発プロジェクト「都市空間の熱環境評価・対策技術の開発(平成16~18年度)」において開発した、スーパーコンピューターによるヒートアイランド解析技術を基にパソコンで簡易に予測できるツールである。CFD(数値流体力学)による計算プログラムを汎用のパソコンソフトに組み込み、地区スケールの熱環境をシミュレーションすることができる。

「都市空間の熱環境評価・対策技術の開発(平成16~18年度)」の研究成果を取りまとめた「地球シミュレータを用いた東京23区全域における高解像度のヒートアイランド数値解析」(平成22年3月 国土交通省国土技術政策総合研究所)における数値解析コードの概要は以下に示すとおりである。

表 2 数値解析コードの概要

項目	内容
対象流れ場	密度変化を伴う混合気体の低 Mach 数流れ
基礎方程式系	・質量保存方程式
	・運動量輸送方程式
	(浮力、コリオリカ、樹木抗力を考慮。)
	・エネルギー輸送方程式
	(温位で定式化。人工熱や壁面等からの顕熱放散を考慮。)
	・水蒸気の輸送方程式
	(比湿で定式化。人工熱や壁面等からの潜熱放散を考慮。)
	・乱流エネルギーkの輸送方程式
	(浮力、湿気、樹木による乱れの生成を考慮。)
	・乱流エネルギー散逸率εの輸送方程式
	(浮力、湿気、樹木による乱れの散逸を考慮。)
	※格子解像度以下の物体影響を考慮する為に、全ての方程式
	は FAVOR 法により定式化がなされている。
乱流モデル	標準 k - ϵ モデル
座標系	3 次元直交座標系
計算格子	スタガード格子
離散化法	有限差分法
空間離散化法	1 次精度風上差分(移流項)、2 次精度中心差分(移流項以外)
時間離散化法	完全陰解法
行列解法	AMG-CG 法、BiCGSTAB 法

出典:「地球シミュレータを用いた東京 23 区全域における高解像度のヒートアイランド数値解析」 (平成22年3月 国土交通省国土技術政策総合研究所)

1) 気象条件

「都市の熱環境対策評価ツール」の数値シミュレーションにあたり、平成 27 年夏季 $(7\sim9\,\mathrm{J})$ において、最も暑さ指数 (WBGT) が高い平成 27 年8月6日の気象条件を用いた。気象条件は表 2.3-2 に示すとおりである。

なお、気象データは、東京管区気象台の測定値を用いており、風速は 0.1m/s として計算した。

表2.3-2 平成27年8月6日の気象条件

n±.88	風速	国占	気温	海面気圧	現地気圧	相対湿度	全天日射量	WBGT
時間	m/s	風向	$^{\circ}$ C	hPa	hPa	%	kW/m^2	$^{\circ}\! \mathbb{C}$
1	0.1	南	27.9	1011.0	1008.3	77. 0	0.00	25. 4
2	0.1	南	28.0	1011.0	1008.3	76. 0	0.00	25. 3
3	0.1	南	27.5	1011.2	1008.5	78.0	0.00	25. 1
4	0.1	南	27.7	1011.6	1008.9	77.0	0.00	25. 2
5	0. 1	南	27.7	1012.3	1009.6	77.0	0.00	25.3
6	0. 1	南	27.9	1012.8	1010.1	78.0	0.05	26.0
7	0.1	南	29.6	1012.8	1010.1	70.0	0. 24	27.8
8	0.1	南	30.9	1012.8	1010.1	66.0	0.43	29.4
9	0.1	南	32.0	1013.0	1010.3	59.0	0. 59	30.0
10	0. 1	南	33.8	1013.0	1010.3	58.0	0. 75	31.6
11	0. 1	南	34. 1	1012.8	1010.1	57.0	0.84	31.8
12	0.1	南	34.6	1012. 2	1009.5	57.0	0.88	32.2
13	0.1	南	34. 3	1011.9	1009. 2	55.0	0.87	31.6
14	0.1	南	35. 2	1011.7	1009.0	56.0	0.79	32.6
15	0. 1	南	34. 5	1011.4	1008.7	54.0	0.68	31.6
16	0. 1	南	34.0	1011.4	1008.7	53.0	0. 52	30.7
17	0.1	南	33. 1	1011.7	1009.0	59. 0	0.34	30. 1
18	0.1	南	31.3	1012.8	1010.1	65. 0	0. 10	27.9
19	0.1	南	30.4	1013.5	1010.8	71.0	0.00	27. 1
20	0.1	南	29.7	1013. 1	1010.4	75. 0	0.00	26. 9
21	0.1	南	29.6	1014.0	1011.3	76.0	0.00	27.0
22	0.1	南	30.2	1013.7	1011.0	73. 0	0.00	27. 2
23	0.1	南	28.5	1013.7	1011.0	82. 0	0.00	26. 7
24	0.1	南	28. 1	1013.9	1011.2	85.0	0.00	26. 7

2) 予測結果

平成27年8月6日の気象条件より、最も暑さ指数(WBGT)が高くなる14時における予測を行った。予測結果は、表2.3-3に示すとおりである。数値シミュレーションより算出した気温、相対湿度の予測結果および全天日射量の測定値を用いて主なアクセス経路における暑さ指数(WBGT)を算出した。

表2.3-3 暑さ指数(WBGT)の予測結果

予測地点		風速	気温	相対湿度	全天日射量	WBGT
1. 位1	1. 例记点		$^{\circ}\!\mathbb{C}$	%	kW∕m²	$^{\circ}\!\mathbb{C}$
No. 1	最大値	0.1	34. 2	34	0. 79	29
NO. 1	最小値	0.1	31. 4	39	0. 79	27
No. 2-1	最大値	0.1	37. 3	34	0. 79	32
NO. 2-1	最小値	0.1	32.0	45	0. 79	28
No. 2-2	最大値	0.1	35. 3	33	0. 79	30
NO. 2-2	最小値	0.1	34. 2	34	0. 79	29
No. 3	最大値	0.1	35. 6	34	0. 79	30
NO. 3	最小値	0.1	32. 1	41	0. 79	28

注 1) 風速は、0.1m/s として計算した。

²⁾ WBGT の推定値は、四捨五入による端数処理により誤差が生じる場合がある。

2.4 廃棄物

2.4.1 予 測

- (1) 予測結果
 - 1) 施設の建設に伴う廃棄物の排出量及び再利用量並びに処理・処分方法等
 - ア. 建設発生士・建設汚泥の発生量

建設発生土及び建設汚泥の発生量の算出過程は、表2.4-1に示すとおりである。

表2.4-1 建設発生土・建設汚泥の発生量の算出過程

区分	単位	建設発生土	建設汚泥
地盤改良工事	\mathbf{m}^3	42, 100	_
土工事	\mathbf{m}^3	127, 000	_
掘削・山留工事	\mathbf{m}^3		6,000
合 計	\mathbf{m}^3	169, 100	6,000

イ. 建設工事に伴い生じる廃棄物の発生量

建設工事に伴い生じる解体によるコンクリート塊、アスファルト・コンクリート塊の発生量の算出過程は、表2.4-2に示すとおりである。

表2.4-2 建設工事に伴い生じる解体による

コンクリート塊、アスファルト・コンクリート塊の発生量の算出過程

区分	数量 (m³)	重量換算係数 (t/m³)	発生量 (t)
コンクリート塊	18.8	1.8	34
アスファルト・コンクリート塊	55. 5	1.8	100

注) 重量換算係数 (t/m³) は、「平成24年度 建設副産物実態調査 利用量・搬出 先調査」 (平成24年度 国土交通省) の荷積み状態での換算値(参考値) (= 1.8) を使用した。